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ABSTRACT: An implicit temperature calculation algorithm in an absorbing and emit-
ting medium (grey gas) is presented. Emphasis is made on the thermal radiation calcula-
tion where the concept of divergence vector of the radiant heat flux vector is used. This
allows to treat the thermal radiation as a ‘standard’ source term in the energy equation.
A simplified physical model for computing temperature distribution within the spherical
emitting and absorbing region (called fire ball, for shortness) is utilized for illustration-
purposes. The nonlinear transient heat equation is semidiscretised by the finite element
method. The time-integration is performed by implicit Backward-Euler method. The
radiant transfer equation (RTE) is integrated using the implicit mid-point scheme.

Nomenclature
w solid angle, sr
r radial location, m
§ unit direction vector defined by the solid angle w (Fig. 1)
I(r,5(w),t) radiant intensity at r in direction § (Fig. 1), W/m®2.sr
Iy(r,t) black body thermal radiation, W/m?.sr
gr(7, 1) radiant heat flux vector, W/m?
Q-(r, 1) radiation source term, W/m3
Qen(r, t) heat release rate per unit volume, W/m3
Matrices
Onx1 temperature global degrees of freedom
Crxn capacity matrix
Kyxn conductivity matrix
AnNx1 nodal flux column vector

1 Introduction
The temperature distribution inside the absorbing and emitting medium, as schemat-

ically shown in Figure 1, is considered. The case of spherical symmetry is treated.
The medium can be roughly seen as an idealized flame. But this is an over simplified
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approximation, since for instance the convection of hot gases and the soot forma-
tion and oxidation, in the flame, are ignored. The main purpose of this paper is to
propose an implicit algorithm for heat radiation calculations within the ‘flame’, to
use in conjuction with an implicit finite element formulation of the energy balance
equation. '

To illustrate the algorithm, the idealised flame is considered. The flame is as-
sumed to be spherical with no dilatation and no convection. These assumtions do
not naturally hold for a physical flame. But, for a flame in microgravity [8], the
geometrical assumption for the shape is exact. Inside the flame, thermal radiation
is emitted and absorbed by the hot gas-soot mixture. This gas-soot mixture which
forms the flame, is assumed to behave like a grey gas' with no-reflecting boundary.
Please, refer to the text book [4] for basics on thermal radiation. Let the hypothet-
ical flame be confined within the sphere of radius R. The outside region of that ball
consists of air. The heat release rate per unit volume is non zero in the flame and
zero elsewhere (Fig. 1). The heat release rate comes from the exothermic oxidation
of the fuel with air oxygen (burning).

2 Mathematical formulation

One of the purposes of this paper is to illustrate the thermal radiation calculation

algorithm.
The energy balance over the control volume = [0, Ry] is written as
oT(r, t
pc—% = -V - (—kVT(r,t)) + Q-(r, t) + Qen(r, ). (1)

In Eq. (1) the internal convective term is ignored. The dilatation of the gas is also
ignored. Eq. (1) should be complemented with appropriate initial and boundary
conditions. The heat release rate density Qcn(7,t) is assumed to be constant over
the flame (r € [0, R]) and zero outside the flame (r > R, the ambient air with
temperature T, at 7 > R). When computing the radiation source (sink) term
Q.(r,t) the concept of divergence vector of the radiant heat flux vector is used; the
net radiant energy density equals that negative divergence [4]. In other words, in

Eq. (1) Q.(r,t) = -V - §(r,t) and

-V - g (r,t) = k(T (r, 1)) (/4 I(r, §(w), t)dw — A Ly(r, t)) : (2)

T

Before entering mathematical details, let us give the thermal radiation algorithm
in a verbal form: The divergence of the radiative heat flux is formally similar to
the divergence of the conductive heat flux. But now instead of using a simple
constitutive law for radiant heat flux as for instance, Fourier law, we now have

lthis is an approximation where the radiation problem is assumed to be ‘independent’ of the
wavelength.
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Figure 1: Scheme of the physical problem and its discretization. The ‘fire ball’, the
emitting and absorbing medium, is assumed to have spherical symmetry.

simply more lengthy? calculations to perform. One should first, at each location
7, integrate the radiant transfer equation (RTE) (Eq. 3) along all directions §{(w)
ending at that location to obtain the radiant intensities I at r, needed in Eq. (2),
and then use the divergence concept and sum up functions of these intensities and
black body radiation all over the solid angles originating from that location to finally
obtain the divergence (2) to be directly inserted into (1) as Q.(r,t).

In the ‘fire ball’ application, the grey gas assumption is made, ¢.e., absorbing-
emitting grey gas with no scattering. This is justified as the size of soot particles
in the flame remains less than 0.1 um [5, Thermal radiation section] which is less

20ne basic difference being that Fourier law acts only locally at r while the radiation acts at
r globally from every spatial point visible to r. This is what makes computations more heavy
compared to diffusive flux computations, even when the spectral dependence of the equations is
ignored as in the grey gas assumption.
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than that thermal radiation wavelength®. The Planck mean absorbtion coefficient
from the contribution of the soot! x = 11.8f,T (1/cm) [6], is proportional to the
soot volume fraction f, [9]. The solid angle dw = sinfdfld¢ and the radiant in-
tensity at location r in the direction of the unit vector §'is I(r, 5(w), t) (W/m?.sr).
The black body thermal radiation being Iy(r,t) = oT%(r,t)/w. The radiant inten-
sity I(r,5(w),t) at location r along the direction 3, is obtained as I(s.(w),%) by
integrating the initial value problem

D (s, 1)) (1l 1) — 1(5,8) ®)
along the straight path s(w) € [se, 8-(w)] defined by the direction 5, from a point
so with known initial value I(sg,t) = I, (so € 8Q where I, = oT% /) to point
s = s,(w). The points s,(w) and r coincide (Fig. 1). Finally, the radiant energy
density U(r,t) in (2) is obtained by integrating along all the solid angles dw. In a
spherically symmetrical case, this gives

U(r,t) = /4 I(r, s(w), t)dw = 21 ]Uw I(r,s(6),t)sinfdd (4)

The cases where the soot radiation dominates over the gas radiation are now
considered. This is true for relatively large soot volume fractions f,, say > 1077.
The mean absorbtion coefficient is & = 11.8f,T (1/cm). It is assumed, to illustrate
the radiation calculation, that the soot volume fraction f, is constant [6]. In flames,
usually, the soot volume fraction f, is within the interval 107°-10~7 [5]. In real fire
situations, f, is a priori unknown transient field [6] where the soot formation and
oxidation should be considered |7]. Generally, there is more soot in the middle than
at the ‘boundary’ of a flame.

3 Numerical formulation

A natural way to solve the energy equation is now to use the finite element (FE)
formulation [1]. The classical approximation of the temperature field as

N
TO(r,t) = 3 ei(r)(t) (%)

3Thermal radiation spectrum range &~ 0.1 — 100 um [5, Thermal radiation section] and [9], this
length being larger than soot particle dimensions (< 0.1 um in flame) and therefore no scattering
occurs.

4Gaseous combustion products are HoO, CO» and soot. The contribution 4 from these gases
(to the mean absorbtion coefficient) should be added in cases where their contributions are of
the order of that of soot (with small f, < 10~7). In this case: k¥ = Ky + K,. The absorbsion
coefficient of the gases kg should be included: Planck mean absorbtion coefficient for various
gases as function of T are reported in [5, Thermal radiation section: 1-73, Fig. 1-4.7] from which
kg can be obtained. (this should be added to &,). For soot [5, Eq. (39)] gives a mean absorbtion
coefficient ;.
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is made, where the basis functions ¢;(r) are the standard linear piecewise functions
over the element e defined over r € [r{?, r{?], e = 1... N, and @Ee) (t) being the
nodal temperatures of the element. Inserting this approx1mation into the weak form
of (1) and using the Galerkin method, one obtains the semidiscrete energy balance
equations [1], [2]

C(k—-l) d@(k)

—— = —K.@® 4 g~ + q® D + g, ®D, (6)

The matrices and column vectors in (6), excluding the capacty matrix, are cal-
culated by Gauss quadrature using one integration point. The capacity matrix is
calculated using the Newton-Cotes scheme to obtain a diagonal matrix C. The term
q(t) contains the boundary conditions. The term qg,(t) includes the heat release
rate generated by the burning of the fuel. The time-integration of the resulting sys-
tem of nonlinear ordinary differential equations (6) is performed with the implicit
backward-Euler (BE) method [1| with the algorithm

ol =@, +A0%, (7)
where A@gk) is solution of
CY . A0P = AqY, (8)
with
Aq® = (K - 0 + g + () + () ¥) - At 0

In (8) the column vector AP is solved using the Gaussian elimination scheme.
The time step At, = t,41 — t,. When solving Egs. (7)—(9), the Picard iteration
scheme is used. The convergence (stopping) criteria for the iteration step k+ 1
is [|T*+ — TH]f /1|T’°“|| < RTOL at each t,, with RTOL = 103 used with the
definition ||7'))? = fo |T(r,t,)]?dr. The matrices and column vectors are detailed
in Appendix (A).

3.1 Calculation of the radiative source term

The source term Q.(rx,t) = —V - §.(7%, ) is computed by numerically integrating
Eq. (2) at locations ry € [0, R], where k = 1... N, + 1 being the nodal points on
7. The numerical quadrature is performed in the next way First the angle 8 is
discretised into Ny angles 6; (i = 1... Np and Af; = 6,1, — 6;) such that sin 6;A6;
is constant®. Then, the IVP (3) is numerlcally 1ntegrated using the implicit mid-
point scheme (O(As)?) [3], along the straight path s(6;) € [si, si] to finally obtain
I(rg,s(8;),t) in (4), for i =1... Ny (Fig. 1). The integration path is the segment
starting at the point s(6;) = s;o (on the perimeter 09 of radius R) and ending at the

to ensure that equal solid angles are obtained, to ‘optimize’ the accuracy of the numer-
ical quadrature of (4) in case of constant radiant flux. These are recursively solved from
6; —2/(Ngsin®;) —0;,_1 =0, where §; =0and i=1...Ng— 1.
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point s;; which coincides with 7. The path s(f;) is discretized into N; subintervals.
The integral (4) is obtained using the trapezoidal rule. By inserting the numerical
value of that integral into (2), the radiative source (sink) term Q,(ry,t) is finally
obtained. Note that Q.(r;,t) = 0, outside the flame r; > R.
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Figure 2: Analytical versus numerical solutions. Analytical from Carslaw and Jaeger.
Steady case [10, Chap. X, ex. I, p. 231, Eq. (3)]
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Figure 3: Analytical versus numerical solutions. Analytical from Carslaw et al. Transient
case. [10, I, p. 243 (Eq. (6))]. The time steps, in the curves, is 4.5 s. The first curve
corresponds to intial time 0 s and the last one to 60 s.
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4 Numerical examples

4.1 Thermal diffusion only

The implemented numerical solution scheme (without the radiation term) is checked
with two known solutions from Carslaw and Jaeger [10]. Two axisymmetric analyt-
ical problems: a) steady solution without source term: A hollow sphere a < r < b,
T(a) = 100 °C and T'(b) = 200 °C, where a and b are 5 and 10 mm, respectively.
b) unsteady case with constant heat source: A homogenious sphere of 10 mm radius
and constant heat generation rate per unit volume of 0.3 MW /m? having zero initial
and surface temperature. The thermophysical properties used are p = 146 kg/m3,
¢, = 800 J/kg.K and K = 0.1 W/m.K. The analytical solutions for the two cases
are given in [10, Chap. X, ex. I, p. 231, Eq. (3) and ex. I, p. 243, Eq. (6)]. In
both cases the numerical solutions converged to the analytical ones (Figures 2 and
3).

4.2 Flame temperatures including radiation

Transient temperature profiles for a spherical flame with constant input heat release
rate density® of 1 MW /m? are now calculated with the raditative model included.
The case of a spherical flame is considered. Temperature dependent thermal prop-
erties of air are used for the flame. Results for different absorbtion coefficients are
shown in Fig. 4. Results for constant k, and for different flame radius are reported
in Fig. 5. Note that, the more sooty the flame is (with increasing of soot volume
fraction f,) the colder the flame gets. The visible’” flame, as seen by a human eye,
is due in fact to the radiative heat from the hot soot particles (particle size < 10
nm in flame).

Note that, even in the spherical case with no motion® considered here, the calcu-
lated temperature profiles do not correspond necessarily to real temperatures, in the
sense that in a real flame, the soot volume fraction f, is an unknown transient field
with range 107°-1077, and that f, (as can be seen in Fig. 4) affects significantly the
temperatures. However, the calculated temperatures are consistent and fall into the
range of observed flame temperatures because the used values for the soot fractions
are in observed ranges. But, to calculate the transient flame temperatures more
confidently, it is necessary to model adequately the soot formation and oxidation
processes to achieve a better description of the radiative heat transfer process.

5 Concluding remarks

An implicit thermal radiation algorithm for integrating the RTE, when solving the
energy equation by FEM, is derived. The concept of divergence of the flux vector

Sthe total heat power contained in 1 m® of flame is approximately 0.5 - 1 MW /m3.

Tvisible colours of hot objects: 500°C —first visible red glow, 700°C ~Dull red, 900°C —Cherry
red, 1100°C —Orange, 1400°C —White [9].

8in other words, only heat diffusion and radiation are the heat transfer modes considered.
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Figure 4: Computed steady temperature distribution in the flame and outside it for
R = 0.5 m. (grey gas assumption, ks = 1186f,T, f, = 107¢ and f, = 107 with
Qcr =1 MW /m3).
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Figure 5: Computed steady temperature distribution in the flame and outside it for
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Q=1 MW/mg)

a2



allows a systematical treatment of the radiation term as a standard heat source
(sink) term in the FE-formulation.
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A Appendix: Matrices and column vectors

The elementary matrices are

(e)

cw) = 4 [ oI 0)e(Tr,0) 6:r)gs(r) e (10
e

KO = an [ HI00)6irr)3,0) ar, (1)
ot

@O0 = 4 [ -V a0 (12)
Tl,(e)

(qch)ge)(t) = 4 ]r :) Qen(r,t) @(r) rdr, (13)

where 4,7 = 1,2 and e = 1...N,. Assembling of the global matrices (from elementary
contributions (10-13)) in (6) is made using standard FE-assembling methods [1]. Ma-
trices (11-13)) are evaluated by Gauss quadrature using one integration point located
at the center of the element e. The first term cﬁ) is integrated with the scheme C'lq) =
am(ry /42 p(T(r1/4),t) c(T(r1/4),t) (rél) —r%l))/Q to avoid singularity in C™! = 1/diag(C)
(one Gauss-point at r;/4). For the remaining terms in matrices C‘z(; ), the Newton-Cotes
scheme is used to obtain diagonal matrix C. The nodal flux column vector at the bound-
ary r — R > R where the ambient air temperature is T and I = 0Ty /7 (with
h — oo, constraint by penalty method)

oo

awsa(t) = 4782, | | -hoo (T(Reo,t) = Tao) Sy

0
1

The elementary shape functions, defined on element e, are

(e)

(e)
T—T r=T
(}5] ('r) = W and ¢2(T) =1 ;‘(e)—]:'r(e)', Wherer € [l'ge), I'ge)]. (15)
o=y 2 — 1
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