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ABSTRACT

It seems that no general rules have been given in the literature how to select the relative
weights for the different field equation residuals when the least squares method is
employed in the finite element method. This article suggest a possible strategy for this
employing the one-dimensional heat conduction problem as an illuminating
demonstration case. The goal is to achieve the nodally exact solution. Local solution
behavior is employed in a version of the patch test to determine the weight factors. In
this simple case the optimum weight factors are found to behave quite unexpectedly.

HEAT CONDUCTION PROBLEM

Let us consider the problem described by the field equation

%(_k%)ms=0, O<x<L (1)

and the boundary conditions

T:]’_", x=0 (2)
_k.gg:"q_’ x=1L. (3)

T(x) is the temperature to be determined as a function of the independent variable x.
The thermal conductivity k(x) and the heat source rate per volume s(x) are given
quantities. The boundary conditions mean that on the left hand boundary the value of
the temperature is given =T and that on the right hand boundary the value of the heat
flux is given =g (Figure 1).



0
Figure 1 One-dimensional heat conduction through a wall.

To deal with a C°-continuous finite element approximation using the least squares

method we define a new unknown variable (the heat flux)

d
g=-kS- @

dx

and describe the problem now by the field equations

Rwll_se0, Dozl (5)
dx
T
R,=q+k—=0, 0<x<lL, 6
2 BT (6)

and by the boundary conditions

T=T, x=0, (7
q=gq, x=L. (8)

Remark 1. Another obvious quantity as a new variable could be directly the derivative
dT/dx. However, with a discontinuous thermal conductivity — for instance in

connection with a composite material wall — the derivative has jumps at the material
interfaces but the flux is continuous. Thus as we use here continuous approximations,

the selection of g as the new variable is more appropriate. [

LEAST SQUARES FORMULATION

The least squares expression corresponding to (5) and (6) can be written using obvious

matrix notation as

1 L[R) e ][R



The boundary conditions (7) and (8) are assumed to be satisfied in advance by the
admissible T and g in (9). The weight factor matrix [or] can be taken symmetric
(0 = ay)) without loss of generality. The elements of the matrix must naturally have
such physical dimensions that the least squares expression is dimensionally
homogeneous. The question is: How can one select the elements of the weight factor
matrix in a logical way when the finite element method is used? It is obvious that the
values of the weightings have in general an effect on the discrete solution. It seems that

in the literature the values are taken based just on numerical experiments.

As only the relative values of the weight factors are of importance we simplify the
notation by taking @, =1 and by denoting ¢, = &,; = and o, = . Expression (9)

1s now in detail

L
H(T,q)=%-fo [R? +2PR R, + 0tR?]dx. (10)

FINITE ELEMENT APPROXIMATION

We employ two-noded linear element approximation — shown schematically in Figure

2 (a) — for T and q:
T(x) = ZN;(x)T;,
6(x)=>;Nj(x)qj, (b

where the N are the global shape functions and T; and g; are the nodal values of the

approximations.

(2) (b)

Figure 2 (a) Approximations. (b) Approximations in an element.



Approximations (11) are substituted in (10) and the system equations are obtained from

the stationarity conditions

oIl

oL .
ot _,
aqi

with i=1,2,---,n. We develop these formulas further in some detail. The field equation

residuals are

Ry =X N;q;+kIN/T,

with the obvious meaning for the dash notation. We obtain

o Lk 8RI IR, oR, IR,
T jo +BRE2Z +ﬁR28T +aR28T]dx

_j{0+;3(2 1q; = )kN{ + 0+ (T N q; +k T N/T; JkN/]dx
—Z(j ak® NN dx) T, +

+3[ jo (0tkN;N; + BRN{NY )dx]g; +

- [ pr;sdx,

“f [Rl aRl ﬁRi 8R2 ‘*‘ﬁRz 8R1 to aky gRE]dx

= [z, sJN’+ B(ENjg; - s)N; +
+ﬁ(ENqu +kENJ’-Tj)N;+ (T N;q; +k ZN/T;)N, 1dx

= S (kNN + BN, N})dx]T; + (14)

qu

L ’ ’ r ’
+ z[jo (NiNj +oN;N; + B(N;N} + NN; ))dx]g, +

L
= [ @i+ BN s,

The discrete system can be written thus as

Elen sl el 22 X
J=1K21 Kzzijqj bZI' 0)’ T



with
L 2 arenr?
(Ky))y = [ ok*NiN; dx,
L IAT?
(K1) = [ (GkN{N; + BRNING )a,
L ’ 4 4
(Kpp)y = jo (kNN + BN N%)dx,
L ’ ’ (4
gy = jo (NN} +aN;N; + B(N;N} + NiN; ))dx, (16)
L
(By); = [ BiN sdx,
L 4
(By); = [ (N+ BN;)sdx.
In what follows we assume constant & and f in an element; of course the values can
be different from element to element. Assuming further for simplicity some constant
representative value for k in an element the members of the element stiffness matrix are

easily evaluated in closed form. Using the local element node numbering of Figure 2
(b), the element contribution expressions are

2Ky KT [T [B)° .
k. K b [ i=1,2 (17)
j=1 L2l 22 i q j 2);

wo=5 )
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The source term contributions are evaluated here just for a constant s. The sixteen

with

(18)

members of the element stiffness matrix and the four members of the "load vector" are



given in a condensed matrix form with index i referring to the row number and j to the
column number. The element index e has been left out for simplicity.

A LOGIC FOR THE SELECTION OF THE WEIGHT FACTORS

The weighted residual formulations — the least squares method can also be considered
as a weighted residual formulation, e.g. [1] — in a way give up the study of the detailed
field equations and consider them only in an average, integrated sense. We now try to
inject information of the actual local solution behaviour into the formulation. Let us
consider a generic point in the domain of the solution. To simplify the treatment we
take the operator data (here k) to have some constant representative values. (See
Remarks 3 and 4). Field equation (1) obtains the form
—ko%ig—(sg+s()x+%sgx2+%sgﬁt3+---)=0. (19)
Without loss of generality the local origin has been taken at the point under study. The
source term has been developed into a Taylor series. Equation (19) is a linear second
order constant coefficient differential equation. Its analytical solution can be obtained

by the well known methods explained in mathematics texts. The solution is

Tl Bttt L0 LB g 1 S5 (20)
2k 6 ky 24 ky 120 ky

where A and B are the two integration constants. Thus the behaviour of the solution in
the neigborhood of the point under study must be approximately of the form (20). How
can we make use of this information? At a first glance it seems that some kind of
iterative procedure would be needed as the values of the integration constant should
have to be found at the point under question from a preliminary numerical solution.
Fortunately this is not the case. It is presently found that the values of the integration

constants are not needed at all.

The flux from (20) is
q=—kyB+s x+ls’x2+ls—3x3+—l—i&x4+--- (21)
OFTROTTRT Tk, 24k,

We collect 7, g and s in a column vector and obtain



T 1 x —1/(2ky) - x* ~1/(6ky) - x°

gp=AJ00+B—ky t+5, % +sh1 1/2-x% L+
s 0 0 1 X
~1/(24ky) - x* —1/(120ky) - x°
sy 1062 sy 1242t L4 (22)
1/2 x* 1/6-x°

We call this combination of 7, g and s as the reference solution. The values A4, B, S, e

fix the solution. We obtain specific reference solutions by taking consecutively only
A#0,only B#0,only s5#0, -.. . These give the reference solutions (see Remark 2)

T=1, g=0, s=0,
T=x, g=-ky, s=0,
2 (23)
T=—lx—, g=2x, =i,
2 ky

Remark 2. It is found that A, B, s, , --- cancel in the equations used in the patch test

so that we can simply take here A=1, B=1,....0

PATCH TEST

In an ideal finite element calculation we would always get the nodally exact solution. A
nodally exact solution is clearly very beneficial for post-processing and adaptive
procedures. This ideal can rarely be achieved in reality but we can strive for it. For this
purpose we apply the patch test, described e.g. in [2], in a special way making use of

the reference solutions.

Consider node i inside a regular mesh at the point under study (Figure 3 (a)).

i-1 i i-_i-l i i+1
Lk | B ] |k

(a) x (b) *

Figure 3 (a) Two element patch. (b) One element patch.

The two system equations corresponding to node i are
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(0‘_"_ﬁ)T1+2ﬁkl"+(gjﬁ—ﬁ L+

1 2 4ah h
(_.E )qt_1+( +——=g; +("“"‘+ )Qi+1—,[,h jsdx — ﬁj St

The Euler equations following from the stationarity of (10) (with constant k, o and )

are found to be

2 .
_ﬁkL_ dq kii_T) ﬁk—
(25)
2 2
—%x—-—+a(q+k—) ﬂde —di-ﬂ -0.

Thus, the discrete equations are rather transparent if we consider the Galerkin method

applied on (25).

We now take the nodal values for T and g at nodes i—1, i, i+1 evaluated from the
specific reference solutions (23) and demand equations (24) to be valid using the
corresponding source term s. The Mathematica program is used conveniently to
perform the rather tedious calculations. It is found that in the first three cases the
equations are satisfied — the patch test is passed — irrespective of the values of o and
B. After that it is found that one must put & =0 and S can have any non-zero value
and the patch test is always passed no matter the series term order! In fact, a general
specific reference solution continuing (23) is obtained as (multiplication by a constant

for simplicity is performed)

1 n+2 1 1 n
T=——— ", g=—x" s=x". 26
ko(n+1)(n+2) = (25}
This produces in (24) with arbitrary « and f when for instance n = 100 the residuals
_ 500tk h'0!
5151 (27)

0.

As equations (24) are linear with respect to the nodal values and with respect to the
source term, the linear combination (22) with any values of A, B, ... passes the patch

10



test when « = 0. Thus we have been able to make use of the local solution without
actual knowledge of the local integration constants.

The result obtained is rather suprising as often in the least squares method the weight
factor matrix is taken from the outset to be diagonal. Here this selection is seen not to

be the best possible.

The calculations are repeated for a patch (one element) at the end of the domain (Figure
3 (b)). Now either temperature or flux is given and correspondingly only either of the

system equations for node i
ok ok’
B g
ok Pk ok Pk
H(———+ g+ (—— -
C RS,
(_E.]E_;.ﬁ E.]S_.ﬁ
2 h 2 h
1 oh 1 oh I h B
+(Z+'_3""‘ﬁ)‘.7i+(_E+—6’)Qi+1__[ONide_ﬁ_[ONide*o'

h r
)q:1~ Bk [ Nisdx =0, o8

)T +( Ty +

is available. The patch test is performed similarly as above. Now the first two cases (23)
are passed automatically but the third and fourth case are found to give the residuals

0,
_ak? (29)
12’
and
_ okh’
15 3
ah )
60

respectively. Continuing, it is again found we must put & =0 and f can have any non-

zero value.

Remark 3. It should be noted that the approximation introduced by assuming constant
operator data in evaluating the reference solutions does not produce any errors in the
least squares formulation as such. This approximation is used only to give us readily
some suitable reference solutions to be used in the determination of roughly optimum
weighting factors. Obviously nearly any selection of the weighting factors leads finally

11



to a convergent solution when the mesh gets dense enough. However, our goal is to

have nodally accurate results already with practical meshes. 0

Remark 4. A more accurate representation of a reference solution could perhaps be

achieved in the case of a varying k by first writing equation (1) as

2
AT dkdr &

and after that taking k and dk/dx to have some local constant values. However, based
on the discussion in Remark 3, there are hardly grounds to complicate the treatment in

this manner. [

NUMERICAL EXAMPLE
A numerical example case has been considered using dimensionless presentation with
the data
- 1
L=1, k=1, s=-sin(4nx), 7T(0)=0, Whl}{' (32)

The exact solution is

1 . | R 1 _a .,
= [-sin(4rx)] = PPy T(x), g= ZECOS(‘UDC) = Eq(x). (33)

The results of some calculations are shown in Figures 4, 5, 6, and 7. The exact
distributions are given by the smooth curves. The results are actually expressed for the
scaled quantities T and g defined by formulas (33). Only five elements with a uniform

and an irregular mesh are employed.

In Figures 4 and 5 a selection of the optimum weight factors is used. The numerical
results are seen to be according to the theory. In Figures 6 and 7 a non-optimum weight
factor selection is used. The temperature distribution is now found to be rather poor. It
should be mentioned that in the case of a varying conductivity even with the optimum
weight factor values no quite nodally exact results for the temperature are any more to

be expected.

12
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Figure 4 Weights: @ =0 and f = 1. Left, temperature. Right, heat ﬂux.
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Figure 5 Weights: @ =0 and f =1. Left, temperature. Right, heat flux.
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Figure 6 Weights: a =1 and ﬁ = 0. Left, temperature. Right, heat flux.
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Figure 7 Weights: ¢ =1 and §=0. Left, temperature. Right, heat flux.
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CONCLUDING REMARKS

The initial ideas to determine good weighting factors described above in connection
with the one-dimensional heat conduction case can hopefully be generalized to more
complicated problems and to more than one dimension although work remains to be
done to find the best approaches. It may prove that the goal of exact nodal values can be
a too demanding one and some "average" type criteria must be applied. In any case, the
possibility to employ reference solutions to inject more information into the
formulation may be valuable. The lines of thought used above are similar to those
employed for instance in References [3], [4], [5], and [6] with some success for the
determination of tuning parameter values in the stabilized or so-called sensitized finite
element Galerkin methods. These references describe certain attempts to find reference
solutions and to apply the patch test in more than one dimension. In addition to ad hoc
procedures extending one-dimensional results, the type of approach described below

could be speculated on.

Let us consider as an example case again the heat conduction problem now in two

dimensions. The governing field equation for an isotropic material is
d. ,dT  d . dT
— (k=N +—(-k—)=5=0 34
ax( 8x) By( By) : (34

or using a form more suitable with the least squares method:

dg Or

ML 5=0,

8x+9y s

q+k%§=0, (35)
oT

r+k—=20
dy

A possibility to find reference solutions could be as follows. Starting from (34), T and s

are developed into Taylor series:
1 1
T=Ty+(T,)gx+ (7;,)0y+-2~(TH)0x2 +(Txy)0xy+-2-(Tyy)0y2 o

1 1 1 1
+E(Tm)0x3 +§(Tm)0x2y+ E(Twy)oxy2 +g(1rm)0y3--- (36)

1 1
$= 80+ (5,07 + ()09 + S (5) %" + (53 )o2y+ = (53 )0y" +++ (37)
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Assuming a locally constant k, we obtain from (34) and from its differentiated forms
evaluated at the local origin:
—ko(Txdo —ko(Ty)o — 50 =0,
—ko (T o —ko(Tyyg do = (55 )0 =0,
—ko (T do —ko(Tyyy)o — (8y)0 =0, (38)
— ko (T Jo —ko(Tyyexdo = (S )0 =0,

These equations contain information about the governing field equation. We obtain,
say,

(Txdo = —(Tyy)o -

ko
(S )0
(T do =)
0==Uph =7 (39)
(sy)0
(yyy _(Txxy 0~ ; 3
0

Substituting these in (36) gives

1 Ky 1
T= %+(Tx)ox+<1;)oy+—{—<ryy)o ——°]x2 +(Ty)oxy+ - (Tydoy” +

+2[=(Ty - )O]x #2 Ty o a4 3 Ty Jo2r” +
[~ (Lo~ (y)01y3+---
6 ko

= Ty +(T)ox+ (T, )0)’+(T Yoxy+(T, )o<—1x2+—12—y2>+

+ T ol X%y =20+ Ty Y- #° +;xy )+ 03+
0

1 1
{5 )gl=—2" )+ (5, )g(=—=y" ) += e
(8:)o( 6 *)+ (s, ) 6k ») (40)
Ending at this, we have ten independent multipliers and thus ten specific reference
solutions available. (The corresponding p, r and s are obtained from (35) and (37).) It

remains to be studied if this kind of approach will yield any useful results.
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