PITKÄN JÄNNEVÄLIN SILLAN AEROELASTINEN STABIILIIUS, I: TUULITUNNELIKOKEET

Risto Kiviluoma

Rakenteiden Mekaniikka, Vol. 30
Nrot 3-4, 1997, s. 3-22

Artikkelisarjassa käsitellään suurten siltojen tärinään ja aerielastiseen stabiiliuteen liittyvää ongelmakenttää kirjoittajan Teknillisen korkeakoulun sillanrakennustekniikan laboratoriossa suorittaman perustutkimuksen [1,2] pohjalta.

HISTORIALLINEN TAUSTA

Jännevälintä pitkien siltojen stabiiliteetti tuulikuormalle on ollut insinöörien erityisen kiinnostuksen kohteena vanhan Tacoma Narrows -sillan tuhotumisen jälkeen marraskuussa 1940. Silta sijaitsee Yhdysvaltain Washingtonin osavaltiossa ja oli valmistuttaan yksi pisimmistä riippusilloista - pääjärven pituus oli 854 m. Silta tuhotui neljä vuonna sen jälkeen, kun se oli avattu liikenteelle. Sillan jäykkystyspalkki joutui yllättäen voimakkaaseen harmoniseen vääntövärhdyliikkeeseen tuulen vaikutuksesta tuulennopeuden ollessa vain noin 19 m/s. Värähtely vaarioitti nopeasti jäykkystyspalkin rakenteita ja lopullinen tuhotuminen tapahtui noin 70 minuutin kuluttua vääntövärhdylyksestä. Tuulennopeutta vastaava staattinen tuulikuorma (0,2 kN/m²) oli murto-osa senaikaisesta tuulikuorman suunnitteluvastosta (noin 1,4 kN/m² kohdistuen 1,5-kertaiselle projektiopinta- alalle).

Vanha Tacoma -silta ei ollut ensimmäinen joka käsiri tuulen aiheuttamista ongelmista. Farquharson [3] mainitsee kymmenen muuta riippusiltaa (joista Isossa-Britanniassa viisi),

Tacoma Narrows -sillan onnettomuuden syyn varhaisimmassa tutkimuksissa päädyttiin teoriaan, jossa onnettomuus oli pyörteiden irtaantumisen aiheuttamien resonanssivärähtelelyjen seurausta. Teoriaa tukevat siltapakalla tehdyt ja tuulitunnelissa toistetut havaintot, joiden mukaan tietyä väärätelymuodon esiintyminen oli riippuvainen tuulennopeudesta.

Bleichin potentiaalivirtausmalliin perustuva flutterin matemaattinen mallinnus on alkuotaksumiensa perusteella sovellettavissa ainoastaan virtaviivaisille levymäisille poikkil-eikauksille. Kommentoidessaan Bleichin työtä vuonna 1949 Bugsley ehdotti, että sillan flutterin likeyhältöt perustuisivat kokeellisesti määritettävänt flutteriderivaattojen (flutter derivatives) käyttöön. Tämän teorian mukaan itsheerätteiset (kappaleen liikkeestä riippuvat) aerodynaamiset voimat voidaan pienillä värähdyssliikkeen amplitudeilla esittää lausekkeilla, jotka riippuvat vain kappaleen tasapainoaseman suhteen (kuva 1) määritetystä pystykoordinaatista z ja kiertymäkoordinaatista θ sekä näiden ensimmäisistä ja toisista aikaderivaatoista muodossa

\[
\begin{align*}
L_{Sc} &= k_1 z + k_2 \dot{z} + k_3 \ddot{z} + k_4 \theta + k_5 \dot{\theta} + k_6 \dot{\theta} \\
M_{Sc} &= k_7 z + k_8 \dot{z} + k_9 \ddot{z} + k_{10} \theta + k_{11} \dot{\theta} + k_{12} \dot{\theta},
\end{align*}
\]

missä \(L_{Sc}\) on pitusuysisköä kohden laskettu itsheerätteinen nostovoima, \(M_{Sc}\) on pitusuysisköä kohden laskettu itsheerätteinen momentti ja yläpiste tarkoittaa aikaderivaattaa. Nämä lausekkeissaja flutteriderivaatat \(k_i (i = 1...12)\) ovat likimääristä vakoita ja ne määritetään luetettavimmin tuulitunneltollisille, joissa testattava pienoismalli on flutteria vastaavassa liiketilasssa (eli harmonisessa värähdyssliikkeässä). Levymäisen ja virtaviivaisen poikkileikkauskseen tapauksessa voidaan flutterikertoimille johtaa myös analyyytiset lausekkeet esimerkiksi Theodorsenin ratkaisun pohjalta. Lausekkeiden (1) mukaisesti itsheerätteinen nostovoima ja itsheerätteinen momentti häviävät (ovat nollia) silloin, kun kappale on levossa. Kaavojen (1) mukainen "linearisoitu" flutteriteoria on ehkä laajimmin
sotelletu, esimerkkinä Robert Scanlanin mittava tutkimustyö siltapoikkileikkauskseen flutterikertoimien käytön ja niiden kokeellisen määrittämiseen liittyvän teorian kehityksessä.

![Diagram](image.png)

Kuva 1. Poikkileikkauskseen paikkakoordinaatit sekä aerodynaaminen vastus (D), nostovoima (L) ja momentti (M) sekä vastaavat itsereätteiset aerodynaamiset voimat.

Aeroelastiikan tutkimus on sillansuunnittelun osalta pohjautunut vahvasti kokeelliseen työhön ja erityisesti tuulitunnelimallien käyttöön. Tämä kehitys on ollut seurausta siitä, että virtausmekaniikan perusyhtälöihin perustuvat analyyttiset mallit muodostuvat siltapoikkileikkauskille ominaisen irronseen virtauksen ja voimakkaan pyörteen muodostuksen johdosta vaikeasti hallittaviksi. Matemaattisissa malleissa kaavan (1) muoto on periaatteessa säännynyt ennallaan, mutta flutterikertoimet oletetaan reduoidun taajuuden (taulukko 1) funktioiksi.

AEROELASTISITEETTI

Aeroelastisiteetti on tieteena, joka tutkii virtaavan ilman ja kappaleen liikkeen yhteisvaikutusta. Aeroelastiseksi epästabiiliisilmiöksi kutsutaan tilaa, jossa kappaleen liikkeen amplitudi äkillisesti kasvaa tietyssä tuulennonpeudessa. Näissä epästabiiliisilmiöissä itsereätteisillä aerodynaamisilla voimilla on keskeinen rooli. Näitä voimia ovat alhaisilla
tuulennonpeuksilla tyypillisesti merkityksetömiä, mutta tuulennonpeuden kasvaessa ne voivat muuttaa rakenteen värähtelytaajuuksia, värähtelymuotojen välistä vaihe-eroja ja aerodynamisista vaimennusta siten, että rakenne menettää stabiiliuden äkillisesti ja “vaaroittamatta”.

Yhden vapausasteen flutterissa kappale on puhtaassa vääntö- tai taivutusvärähdysliikkeessä. Flutteritaajuus on tyypillisesti lähellä kyseisen värähdysliikkeen ominaismuotoon liittyvää ominaistajaarutta. Nämä epästabiiliusimilööt ovat “vaimennusohjattuja” (damping driven); ne esiintyvät kun värähtelymuotoon liittyvä kokonaisvaimennus (mekaanisen ja aerodynamisen vaimennuksen summa) on nolla. Naisssä epästabiiliusimiloihosta virtaus irtooa kappaleesta ainakin jossain värähtelysyklin vaiheessa, ja siten virtauksen kappaleen kohdistamat aerodynamiset voimat voivat olla luonteeltaan vahvasti epälineaarisia. Tästä epälineaarisuudesta johtuen värähtelyyn amplitudi ei välttämättä kasva monotonisesti ja rajatta kriittisen tuulennonpeuden yläpuolella, vaan värähdysliikkeen amplitudi voi myös stabiloitua. Vääntöliikkeeseen liittyvästä flutterista käytetään nimityksiä vääntöflutteri ja sakkusflutteri (stall flutter) ja taivutusvärähtelyyn liittyvää flutterista nimitystä laukkaamisimiliö (galloping). Vaimennusohjatut aeroelastiset epästabiiliusimilööt ovat keskeisiä sillanrakennustekniikassa tyypillisesti esiintyvien “ei virtaviivaisten” (bluff-body) ja massaltaan suurten kappaleiden stabiiliustarkasteluissa.
Aeroelastisiksi epästäbilisilmiöiksi luetaan flutteri-ilmiöiden lisäksi divergenssi ("flutteri nollataajuudella"), jossa siiven (tai muun rakenteen) vääntökulma kasvaa nopeasti tuulen vaikutuksesta ilman värähdysliikettä. Pyörteiden irtaantumisesta (vortex shedding) aiheutuvaa resonanssivärähtely voidaan lukea puhtaasti aerodynamiseksi epästäbilisilmiöksi; pyörrerata ja sen aiheuttamat herätteet ovat virtaavan väliaineen ilmiö ja esiintyvät myös riippumatta kappaleen liiketilasta (tosiin tässäkin ilmiössä virtauksen aiheuttamat herätteet vahvistuvat kun kappale alkaa värähdellä, joten ilmiöllä on myös aeroelastinen luonne). Tässä ilmiössä kappaleen taakse (virtauksen alapuolelle) syntyvä pyörrerata aiheuttaa kappaleeseen jaksollisia herätteitä. Näiden herätteiden taajuus on riippuvainen virtauksen nopeudesta. Jos herätteiden taajuus yhtyy johonkin rakenteen alimmista ominaistajuuuksista, on seurauksena yleensä amplitudiltaan rajoitettuja tai väentöväärähtelyjä.

SILLAN AERODYNAAMINEN SUUNNITTELU

Vaikka tuulitabiliteetti on keskeinen kysymys erityisesti erittäin pitkien riippusilojen analyysissä, on myös uudempi siltatyyppi, vinoköyysilta, altis tuulen aiheuttamille värähtelyille. Vinoköyysisillan yleinen rakennustapa, ulokemenetelmä, altistaa sillan tuulen vaikutukselle erityisesti rakennusvaiheessa. Myös pyörteiden irtaantuminen voi aiheuttaa vinoköyysisilojen jäykistysspalkkeihin haitallisia värähtelyjä; esimerkiksi Long Creek -vinoköyysiltaan, jonka jännemitte on 217 m, ilmiöitä on aiheuttanut 200 mm värähtelyamplitudeja olosuhteissa, joissa tuulennopeus oli 11...14 m/s ja lunta oli kasaan- nut kaikeisiin. Sillan pääjäänteeseen asennettiin myöhemmin aerodynaamikka parantavat teräslevyt värähtelyjen rajoittamiseksi. Toteutetuilla suurimmilla vinoköyysisilloilla on las-kennallinen flutterinopeus usein epärealistisen suuri cikä raportoituja flutteriongelmia ole, mutta toisaalta näiden siltojen aerodynaamikkaan on kiinnitetty suunnittelussa erityistä huomiota.

Jännenvältääntä pitkien siltojen suunnittelussa on edullista kiinnittää huomiota jäykistysspalkkin poikkileikkauksen aerodynaamiseen muotoon pyörteiden irtaantumisesta aiheutuvien värähtelyamplitudien rajoittamiseksi ja flutterinopeuden kasvattamiseksi. Ensimmäisenä
merkittävänä esimerkkinä modernista suunnittelukäytännöstä, jossa sillon aeroelastinen
stabiilius on varmistettu muotoilemalla jääystyspalkin poikkileikkauksa matalaksi ja
virtaviivaiseksi, voidaan pitää 1960-luvulla rakennettua Severn -siltaa Englannissa. Poikki-
leikkauksen virtaviivaisamisesta saavutettava hyöty on kuitenkin rajallinen, koska myös
liikenne, köydet, lumi ja jää vaikuttavat sillon aerodynaamisiin ominaisuuksiin. Matalan
poikkileikkauksen jääystäminen turbulenssin ja liikennekuorman aiheuttamille
pystysuuntaisille värähtelyille voi olla vaikeaa ja massiivinen jääystysristikko onkin edel-
leen tavanomainen rakenne suurimmilla riippusilloissa.

TUULITUNNELIKOKEET

Tuulitunnelikoideen mallit perustuvat yksinkertaisiin dimensioanalyysillä johdettuihin
sääntöihin, joiden mukaan tutkittavaan ilmiöön vaikuttavista muuttujista muodostettujen
dimensiottomien tulojen (dimensionless products [5]) tulee olla samoja todellisessa
ilmioissä ja tuulitunnelikokeessa. Riippumattomien dimensiottomien tulojen määrä on
rajoitettu, ja ne on tapana esittää vakiintuneissa muodoissa (taulukko 1). Taulukon 1
dimensiottomista tuloista Reynoldsin lukua ei pyritä käytännössä saamaan similaariseksi,
mutta virtauksen ominaisuuksiin voidaan yrittää vaikuttaa esimerkiksi muuntamalla
pienoismallin pinnoitusta tai käyttämällä muunnetuissa mittakaavassa tehtyjä rakennesosia.
Periaatteellisen yhtäsuuruusvaatimuksen seurauksena on kuitenkin edullista käyttää
kokeessa mahdollisimman suurta pienoismallia ja virtausnopeutta. Machin luvun similaari-
suudesta voidaan myös luopua, koska virtaus voidaan olettaa kokoonpuristumattomaksi.
Muut mallilakeihin liittyvät “helpotukset” määräytyvät käytettävän pienoismallin tyyppin ja
huomioon otettavien siltapaikan turbulenssiolosuhteiden perusteella. Laajasti käytettyjä
aeroelastisia tuulitunnelimalleja (kuva 2) ovat täysi malli (full model), poikkileikkauksmalli
(section model) sekä Tanakan ja Davenportin ideoina “kireä nauha” -malli (taut strip
model).
Taullukko 1. Aeroelastikassa yleisesti esiintyviä dimensiottomia tuloja.

<table>
<thead>
<tr>
<th>Nimi</th>
<th>Laukokuva</th>
<th>Simulaarisuuden merkitys tuulitunnellikokeessa</th>
<th>Merkinnät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynoldsin luku</td>
<td>UB/v</td>
<td>Virtauksen tyyppi, kapaleen ympäristössä, virtauksen irtomaiskohtta</td>
<td>U on virtausnopeus, B on kapaleen karakteristinen dimensio, v on väliaineen kinemattinen viskositeetti (μ/p)</td>
</tr>
<tr>
<td>Freuden luku</td>
<td>U^2/gB</td>
<td>Gravitaatiojäykkyys</td>
<td>g on gravitaatiokiihtyvyys</td>
</tr>
<tr>
<td>Machin luku</td>
<td>U/c</td>
<td>Väliaineen kokoonpuristuvuus</td>
<td>c on äänennopeus väliainessa</td>
</tr>
<tr>
<td>Strouhalin luku</td>
<td>B_{0k}/U</td>
<td>Kapaleen koon suhde pyörerradan näennäiseen aallonpituuteen</td>
<td>n_k on (von Kármán) pyörerradan taajuus (tässä yhteydessä B on yleensä poikkileikkauskävärkeus)</td>
</tr>
<tr>
<td>Redusoitu taajuus</td>
<td>B_{0k}/U</td>
<td>Kapaleen koon suhde värähdysliikkeenä aiheutuvan hääriön näennäiseen aallonpituuteen</td>
<td>ω_0 on kapaleen värähdysliikkeen kulmataajuus</td>
</tr>
<tr>
<td>Dimensioton aika</td>
<td>Ut/B</td>
<td>Suureiden aikarippuvuus</td>
<td>t on fysikaalinen aika</td>
</tr>
<tr>
<td>Tiheyssuhde</td>
<td>ρ/ρ_s</td>
<td>Virtausvoimien suhde kapaleen hitausvoimin</td>
<td>ρ on väliaineen tiheys, ρ_s on kapaleen tiheys</td>
</tr>
<tr>
<td>Mekaaninen vaimennus (ζ tai δ)</td>
<td>$-/-$</td>
<td>Kapaleen mekaaninen vaimennus</td>
<td>ζ on vaimennuskerroin, δ on logaritminen dekrementti</td>
</tr>
<tr>
<td>Turbulenssin intensiteetti</td>
<td>g/\bar{U}</td>
<td>Turbulenttsuuden aste virtauksessa</td>
<td>α_i on heilahtelunopeuden komponentin ($i = u, v$ tai w) keskihajaon, \bar{U} on keskinopeus</td>
</tr>
<tr>
<td>Dimensioton heilahtelunopeuden komponentin spektraalitiheys</td>
<td>nS/σ_i^2</td>
<td>Heilahtelunopeuden energian jakautuminen eri taajuksille</td>
<td>n on taajuus, $S_i(n)$ on heilahtelunopeuden komponentin spektraalitiheys, σ_i^2 on heilahtelunopeuden komponentin ($i = u, v$ tai w) varianssi</td>
</tr>
<tr>
<td>Geometria</td>
<td>B/B_s</td>
<td>Mittyavataviksi mallilaiessa</td>
<td>B_s on mitta kapaleessa</td>
</tr>
<tr>
<td>Dimensioton amplitudi</td>
<td>A/B</td>
<td>Siirtymistä aiheutuvat epälineaari-amplitudi</td>
<td>A on kapaleen värähdysliikkeen amplitudi</td>
</tr>
<tr>
<td>Kimmoparametrit</td>
<td>E/pU^5</td>
<td>Kapaleen kimmovoinen suhde virtauksvoimin</td>
<td>E on kapaleen materiaalin kimmokerroin</td>
</tr>
<tr>
<td>Dimensioton turbulenssin mittakaava</td>
<td>nL_i/\bar{U}</td>
<td>Heilahtelunopeuden korrelatioetäisyyys</td>
<td>I_n on turbulenssin mittakaava vastaten heilahtelunopeuden komponentti ($i = u, v$ tai w)</td>
</tr>
</tbody>
</table>

1) Redusoitun taajuuden käänteisluku kutsutaan redusoituki nopeudeksi U_p; redusoitun nopeuden lausekkeessa käytettävän yleisesti kulmataajuuden ω sijasta taajuutta n.

Täysi malli:
- Frouden luku (tuulennonpeuksen suhde)
- geometria
- tiheysuhde
- redusoitu taajuus
- mekaaninen vaikennus
- (Reynoldsin luku)
- (siltapaikan turbulenssiolosuhteet)

Käydyn vastussuomalla voidaan "korjata" käyden paksuutta muuntavilla segmenteillä

Toistetaan irti olevilla segmenteillä kuvataan jääkkystyypin geometria ja massa.

Kiristetyn langan
(läpi koko rakenteen)

"Kireä nauha"-malli:
- redusoitu taajuus (tuulennonpeuksen suhde)
- geometria
- tiheysuhde
- mekaaninen vaikennus
- (Reynoldsin luku)
- (siltapaikan turbulenssiolosuhteet)

Pituusmuuntain
liikkeen estävä vaijeri

Poikkileikkausmalli:
- poikkileikkauksen geometria
- (Reynoldsin luku)
- (siltapaikan turbulenssiolosuhteet)

Flutterikertoimien määrityksessä vapaasti
värähtelevän mallin tapauksessa lisäksi:
- tiheysuhde

Stationaaristen aerodynamisten kertoimien
määrityksessä poikkileikkausmallin rajoitus on
jäykä. Flutterikertoimien määrityksessä malli on
uuteen joukkaa tai vaihtoehtoisessa määrityskriikissa
malli on järkässä rajoituksissa moositorohjattua
harmonisessa pakkolukussa.

Kuva 2. Yleisiä tuulitunnelimalleja ja niissä huomioon otettavia dimensiottomia tuloja.
Täysi malli kuvaa luotettavimmin ja tarkimmin sillan aeroolastista toimintaa, mutta on usein vaikea rakentaa ja muunnella sekä valmistuskustannuksiltaan kallein. Pyrittäessä luotettaviin tuloksiin tällainen pienoismalli joudutaan tekitään suureksi (mallin pituudet ovat tavanomaisesti 2...20 m ja mittakaavat 1:500...1:50), jolloin sen testaamiseen soveltuvat vain tietyt mittauslaita tai suuret tuulitunnelit. Köysikannatteisen mallin tapauksessa gravitaation aiheuttamat palauttavat voimat voivat olla merkittäviä (rakenteen gravitaatiojäkyyn on merkittävä) ja Frouden luku on otettava huomioon. Tällöin siltapaikan tuulennopeuden \(U_p \) ja tuulitunnelissa mitatun virtausnopeuden \(U_m \) välillä yhteys määrittyy tästä mallilta. Tämä yhteys on \(U_m = U_p \mu^k \), missä \(\mu = B_m/B_p \) on mallin geometriinen mittakaava. Tuulitunnelissa käytettävä virtausnopeus on tällöin tyyppisesti varsin alhainen ja Reynoldsin luku on pakotetusti epäsimilaarinen. Kun virtausnopeuksien välillä yhteys on kiinnitetty, määrittää mallinvalmistuksessa tavoitteena oleva ominais-taajuus reiluiden taajuuden yhtäsuuruusvaatimuksesta. Mallin massa määrityy massasuhteen perusteella, joka on riippumaton virtausnopeuksista. Mekaanisen vaiennuksen vaiennuskertoimet on pyrittävä saamaan samoiksi tai alhaisemmiksi kuin todellisen sillan oletetut kertoimet.

Poikkileikkausmallin suurimpana puutteena voidaan pitää sitä, että se ei ota huomioon virtauksen 3-dimensioisen luonteen vaikutusta. Tällä on merkitystä erityisesti määrittäessä vastetta pyörteiden irtaantumiselle, koska ilmiossa herätteet ovat pieniä ja niiden
korrelaatiolla ajan ja paikan suhteen on ratkaiseva merkitys aerodynamisten voimien muodostumisessa ja resonanssiampplitudin määrittymisessä. Kun poikkileikkausmallilla suoritetun tuulitunnelikokeen tuloksista määritetään matemaattisesti kriittistä flutterinopeutta, saadaan tyyppisestä varmalla puolella olevia tuloksia; tulokset ovat siten käytännön suunnittelussa täysin hyväksyttäviä. Poikkileikkausmalli soveltuu hyvin myös eri poikkileikkausten aerodynamisten ominaisuuksien vertailuun. On huomattava, että samaa poikkileikkausmallia, jota käytetään flutterikertoinen määrityskesä, voidaan käyttää myös stationalisten aerodynamisten kertoimien määrittämiseen muuntamalla mallin kiinnitys jäykäksi.

Kireä nauha mallissa Frouden lukua ei tarvitse ottaa huomioon, jolloin virtausnopeuksien suhde määrittelee redusoidun taajuuden yhtäsuuruvuusvaatimuksesta. Tällöin yhteys on \(U_n = U_p \mu n_s / n_p \), missä \(n_s \) on mallin ja \(n_p \) todellisen sillan määritävää ominaistajuus. Tekemällä mallista jäykempi (kirstämällä kannatinlankoja) voidaan tuulitunnelissa käytettävää virtausnopeutta kasvattaa, ja siten Reynoldsin luvun huomioon ottaen saavuttaa luotettavampia tuloksia myös pienillä malleilla. Kireä nauha -mallin suurin etu on sen helppo valmistettavuus ja muunneltavuus.
STATIONAARISET AERODYNAAMISET KERTOIMET

Stationaarisen virtauksen (turbulentin tai ei-turbulentin) liikkumattomaan kappaleeseen aiheuttama vastusvoima D, nostovoima L ja momentti M pituusyksikköä kohden (kuva 1) voidaan esittää kaavoilla

\[
\begin{aligned}
D &= \frac{1}{2} \rho \bar{U}^2 BC_D, \\
L &= \frac{1}{2} \rho \bar{U}^2 BC_L, \\
M &= \frac{1}{2} \rho \bar{U}^2 B^2 C_M,
\end{aligned}
\]

joissa ρ on väliaineen tiheys, \bar{U} on virtauksen keskinopeus (kaukana kappaleen aiheuttamasta härööstä), B on kappaleen karakteristinen mitta, C_D, C_L ja C_M ovat dimensiotonnia stationaarisia aerodynaamisia kertoimia. Dimensioanalyysin perusteella voidaan olettaa, että stationaariset aerodynaamiset kertoimet riippuvat vain kohtauskulmasta (α), Reynolds-luvusta ja tulovirtauksen turbulenssi-parametreista. Stationaariset aerodynaamiset kertoimet määritetään rutininomaisesti tuulitunnelikokeilla kaavan (2) perusteella poikkileikkaustyyppisellä mallilla. Mittaukset tehdään tavanomaisesti tasaisessa (ei-turbulentissa) virtauksessa, mutta periaatteessa luotettavampi tulos saadaan siltapaikan turbulenssiolosuhteita vastaavassa turbulentissa virtauksessa. Mittautulosista on perusteltua ottaa aikakeskiarvo, sillä vaikka tulovirtauksen turbulenssiaste olisi hyvin pieni, kappale itse aiheuttaa virtauksen turbulenssia ("signature" turbulence) ja siten vastus, nostovoima ja momentti ovat tarkasti ottaen ajan funktioita.

Mahdolliset mittaustekoiset ongelmat stationaaristen kertoimien määrityksessä liittyvät mallin värähtelyihin tärinän ja/tai pyörteiden irtaantumisen johdosta. Poikkileikkausmallin virheellisen pituus-leveys-suhteen kompensoimiseksi virtauksen kiertäminen mallin päiden kautta on pyrittävä estämään esimerkiksi asettamalla mallin päiden lähelle virtausta ohjaavat levyt (kuva 2). Virtauksen kuriistemisen (tuulitunnelin seinämien ja mallin välissä) vaikutuksen pienentämiseksi malli on tehtävä riittävän pieneksi.
Kuvassa (3) on esimerkki stationaaristen aerodynaamisten kertoimien määritykseen käytetystä tuulitunnelimallista. Malli kuvaavat *Kärkistensalmen* vinoköyysisillan poikkeileikkausta rakennusvalheessa, jossa nosturi ja muottikalusto on kiinnitetynä. Kokeet on tehty Teknillisen korkeakoulun aerodynaamikan laboratorion tuulitunnelissä sillanrakennustekniikan laboratorion toimesta. Tuulitunnelin mittausosan koko on $2 \times 2 \text{ m}^2$ ja mallin leveys noin 0,5 m. Mittaukset on tehty tasaisessa virtauksessa virtausnopeuden ollessa noin 30 m/s.

Kuva 3. Valokuvia Kärkistensalmen vinoköyysisillan jäykistyspalkin stationaaristen aerodynaamisten kertoimien määrityksessä käytetystä tuulitunnelimallista (kuvat on julkaistu tietotyön siltakeskuksen luvalla).
FLUTTERIDERIVAATTOJEN MÄÄRITTÄMINEN VAPAASTI VÄRÄHTELEVÄN TUULITUNNELIMALLIN TAPAUKSESSA

Tuulitunnelikokeiden suorittamisesta kaavojen (1) mukainen flutteriderivaattojen esitystapa on edullista korvata muodolla, jossa flutteriderivaatat ovat dimensiottomia ja siten suoraan tuulitunnelissa mitattavia suureita. Johtuen jäykistyspalkin suuresta massasta verrattuna "kappaleen mukana liikkuvan" ilman massaan, ovat näennäiseen massaan verrannolliset termit \(k_7, k_6, k_5 \) ja \(k_{12} \) kaavissa (1) merkityksettömiä ja ne voidaan jättää pois tarkasteluista. Seuraavassa käytetään merkintätapa

\[
\begin{align*}
L_{sc} &= \frac{1}{2} \rho \bar{U}^2 B (k_i^* \frac{\tilde{H}_i^*}{U} + k_i^* \frac{B_\theta}{U} + K_i^* \tilde{\theta} + K_i^* \frac{Z_i}{B}) \\
M_{sc} &= \frac{1}{2} \rho \bar{U}^2 B^2 (k_i^* \frac{\tilde{A}_i^*}{U} + K_i^* \frac{B_\theta}{U} + K_i^* \tilde{\theta} + K_i^* \frac{Z_i}{B}),
\end{align*}
\tag{3}
\]

jossa \(K \) on reuduoitua taajuus \((K = B\omega/\bar{U}) \) ja missä \(\tilde{H}_i^* \) (i = 1...4) ja \(\tilde{A}_i^* \) (i = 1...4) ovat dimensiottomia flutteriderivaattoja. Merkintätapa on sama kuin Scanlanin lähteessä [6] käyttämä, lukuun ottamatta pystysuoran voimakomponentin ja z-koordinaatin suuntaa, joka tyyppillisessä amerikkalaisessa esitystavassa on alaspäin (flutteriderivaattoihin lisätty merkintä "kuvaa tästä eroa). Vapaasti jouskiinnityksessä väärätelevän tuulitunnelimallin liike voidaan kuvata kahden vapausasteen väärähtelysysteemillä, kun vastusvoimaa vastaava likesuunta on estetty (kuva 2). Jotta kiertoheilahetut ja pystysuuntainen liike olisivat mekaanisesti kytkmättömiä, on tuulitunnelimallin ripustusakseli sijoitettava poikkileikkausen painopisteen määrittelémälle suoralle. Kun mittaukset tehdään tasaisessa virtauksessa, tuulitunnelimalliin kohdistuu kolmen tyypillisä mitaustuloksiin vaikuttavia aerodynaamisia voimia:

I) Itseherätteisiä aerodynaamisia voimia, jotka voidaan esittää kaavan (3) mukaisilla flutteriderivaavoilla.

II) Tuulitunnelimallin aiheuttamasta turbulenssista aiheutuvia ajasta riippuvia aero-
dynaamisia voimia. Näiden vaikutus aiheuttaa hajontaa mitataustuloksiin, joka voidaan eliminoida esimerkiksi suorittamalla koe useita kertoja ja ottamalla keskiarvo mitatuista tuloksista.

III) Pyörteiden irtaantumisesta aiheutuvia voimia. Näiden vaikutusta ei voida täysin erottaa itserehätteisistä voimista, jolloin mittaukset on pyrittävä tekemään sellaisella redusoidun taajuuden alueella, jossa pyörteiden irtaantuminen ei lukkiinnu rakenteen ominaistaajuuteen.

Kun tuulitunnelimallin mekaaninen vaiemmus oletetaan suhteelliseksi ja kun oletetaan, että vain itserehätteiset aerodynaamiset voimat ovat merkittäviä, voidaan tarkasteltavan kahden vapaustasteen värählyöysteemin liikehätälö esittää voimatasapainon perusteella muodossa

\[
\begin{align*}
 \begin{cases}
 m\ddot{z} + 2\zeta \omega_z \dot{z} + \omega_z^2 z &= L_{se} \\
 J(\ddot{\theta} + 2\zeta \omega_\theta \dot{\theta} + \omega_\theta^2 \theta) &= M_{se}
 \end{cases}
\end{align*}
\]

missä \(m \) on massa pituusyksikköä kohden, \(J \) on massahitauksmomentti pituusyksikköä kohden määrittynä ripustusakselin ympäri, \(\omega \), on vapaan vaintamattoman värählyyn kulmataajuus, \(\zeta \), on mekaanisen vaiemmuksen vaiemmuskertojen ja missä alaindeksi \(i = z \) tai \(\theta \) viittaa vastaavaan liikesuuntaan. Kun tarkasteltava tuulitunnelimallin vapautetaan tasapainoaamasta, niin poikkeavasta asemasta (alkusiirtymästä), alkaa se lineaarisen värählyöysteemin teorian mukaan värählyellä jaksollisesti siten, että pystysuuntaisen liikkeen ja kiertoheilahdusliikkeen amplitudit muuttuvat eksponentiaalisesti ajan funktiona.

Jos molempien liikkeiden jaksonajat ovat samat, voidaan tuulitunnelimallin referenssipisteen liike esittää kaavoilla

\[
\begin{align*}
 z(t) &= z_0 e^{\lambda_0 t} \cos(\omega t) = z_0 e^{(\lambda_0 \omega + i\omega) t} \\
 \theta(t) &= \theta_0 e^{\lambda_0 \omega \theta} \cos(\omega t + \phi) = \theta_0 e^{(\lambda_0 \omega + i\omega) t} \cos(\omega t + \phi)
\end{align*}
\]

joissa \(z_0 \) ja \(\theta_0 \) ovat reaalimääräisiä amplitudivakioita, \(\lambda \) ja \(\lambda_0 \) ovat dimensiottomia amplituidin
muutosnopeuteen verrannollisia vakiota, ω on värähtelyn kulmataajuus ja φ on dimensiönot vaiheerontaa verrannollinen vakoio. Koska flutteriderivaatit määritetään harmoniselle liikkeelle, on mittaukset suoritettava sellaisella ripustusjäykkyyden ja tuulennopeuden yhdistelmällä, jossa amplituiden muutosnopeudet ovat pieniä (λ₂ = λ₇ = 0). On kuitenkin otettava huomioon, että mitä pienempi on amplituidin muutosnopeus, sitä lähempänä värähtelyysteemin kokonaisvaimennus on nollaa ja sitä kauemmin liikkeen alkamisesta aiheutuneet häiriötekijät vaikuttavat vasteeseen. Kun lausekkeet (3) ja (5) sijoitetaan likeyhtälöön (4) saadaan

\[
\begin{bmatrix}
(\lambda_2 \omega_z + i \omega)^2 + 2\zeta_2 \omega_z (\lambda_2 \omega_z + i \omega) + \omega_z^2 \end{bmatrix} \ddot{x}(t) = \begin{bmatrix}
(\lambda_2 \omega_z + i \omega)H_1 + H_2 \end{bmatrix} \omega(t) + \\
+ \begin{bmatrix}
(\lambda_3 \omega_\theta + i \omega)H_3 + H_4 \end{bmatrix} \theta(t)
\end{bmatrix}
\]

\[
\begin{bmatrix}
(\lambda_3 \omega_\theta + i \omega)^2 + 2\zeta_3 \omega_\theta (\lambda_3 \omega_\theta + i \omega) + \omega_\theta^2 \end{bmatrix} \ddot{\theta}(t) = \begin{bmatrix}
(\lambda_3 \omega_\theta + i \omega)A_1 + A_4 \end{bmatrix} \omega(t) + \\
+ \begin{bmatrix}
(\lambda_3 \omega_\theta + i \omega)A_2 + A_3 \end{bmatrix} \theta(t)
\end{bmatrix}
\]

missä on merkitty

\[
\begin{align*}
H_1 &= \frac{\rho B^3 \omega}{2m} \tilde{H}_1, & H_2 &= \frac{\rho B^3 \omega}{2m} \tilde{H}_2, & H_3 &= \frac{\rho B^3 \omega^2}{2m} \tilde{H}_3, & H_4 &= \frac{\rho B^3 \omega^2}{2m} \tilde{H}_4, \\
A_1 &= \frac{\rho B^3 \omega}{2J} \tilde{A}_1, & A_2 &= \frac{\rho B^3 \omega}{2J} \tilde{A}_2, & A_3 &= \frac{\rho B^3 \omega^2}{2J} \tilde{A}_3, & A_4 &= \frac{\rho B^3 \omega^2}{2J} \tilde{A}_4.
\end{align*}
\]

Kun flutteriderivaattojen määrittämisessä suoritetaan ensin kaksi koetta, jossa toisessa kiertoheilahdusliike on estetty (\(\theta = 0\)) ja toisessa pystysuuntainen liike on estetty (\(z = 0\)), saadaan kaavoista (6)

\[
\begin{align*}
H_1 &= 2\omega_2 (\lambda_1 + \zeta_2), & H_4 &= (1 - \lambda_1^2)\omega_2^2 - \omega_1^2, \\
A_2 &= 2\omega_\theta (\lambda_2 + \zeta_\theta) \ , & A_3 &= (1 - \lambda_2^2)\omega_\theta^2 - \omega_2^2 .
\end{align*}
\]

missä ω_1 ja λ_1 ovat kulmataajuus ja amplituiden muutosnopeuteen liittyvä vakoio kokeessa, jossa kiertoheilahdusliike on estetty ja ω_2 ja λ_2 ovat vastaavat suuret kokeessa, jossa pystysuuntainen liike on estetty. Nämä lausekkeet koostuvat vain mitattavista suureista, jolloin
flutteriderivaattojen \tilde{H}_1, \tilde{H}_2, \tilde{A}_2 ja \tilde{A}_3 arvot tarkasteltavalla redusoitunun taajuuden arvolla saadaan määritelyksi lausekkeista (7). Muiden flutteriderivaattojen määrittämiseksi on suoritettava lisäksi koe, jossa tuulitunnelimalli on kiertoheitahduksiikkeessä ja pystysuuntaisessa liikkeessä samanaikaisesti ja samalla taajuudella ω. Tällöin kaavoista (6) saadaan

\[
\begin{align*}
H_2 &= \frac{z_0 e^{(\lambda_2 \omega + \lambda_3 \omega_0)}}{\theta_0 \omega} \left[\left(2\omega \omega (\lambda_2 + \zeta_2) - \omega H_1 \right) \cos \varphi + \right. \\
& \quad \left. - \left[\omega_2^2 (\lambda_2^2 + 2\zeta_2 \lambda_2 + 1) - \omega^2 - \lambda_2 \omega \omega H_1 - H_2 \right] \sin \varphi \right] \\
H_3 &= \frac{z_0 e^{(\lambda_2 \omega + \lambda_3 \omega_0)}}{\theta_0 \omega} \left\{ \left(\sin \varphi - \lambda_2 \omega \omega \cos \varphi \right) \left(2\omega \omega (\lambda_2 + \zeta_2) - \omega H_1 \right) \right. \\
& \quad + \left. \left(\cos \varphi + \lambda_2 \omega \omega \sin \varphi \right) \left[\omega_2^2 (\lambda_2^2 + 2\zeta_2 \lambda_2 + 1) - \omega^2 - \lambda_2 \omega \omega H_1 - H_3 \right] \right\} \\
A_1 &= \frac{\theta_0 e^{(\lambda_2 \omega + \lambda_3 \omega_0)}}{\theta_0 \omega} \left[\left(2\omega \omega (\lambda_2 + \zeta_2) - \omega A_2 \right) \cos \varphi + \\
& \quad + \left[\omega_2^2 (\lambda_2^2 + 2\zeta_2 \lambda_2 + 1) - \omega^2 - \lambda_2 \omega \omega A_2 - A_3 \right] \sin \varphi \right] \\
A_4 &= \frac{\theta_0 e^{(\lambda_2 \omega + \lambda_3 \omega_0)}}{\theta_0 \omega} \left\{ \left(- \sin \varphi - \lambda_2 \omega \omega \cos \varphi \right) \left(2\omega \omega (\lambda_2 + \zeta_2) - \omega A_2 \right) \right. \\
& \quad + \left. \left(\cos \varphi - \lambda_2 \omega \omega \sin \varphi \right) \left[\omega_2^2 (\lambda_2^2 + 2\zeta_2 \lambda_2 + 1) - \omega^2 - \lambda_2 \omega \omega A_2 - A_3 \right] \right\} \\
\end{align*}
\] (9)

Eksponenttitermien johdosta tämä ratkaisu divergoi, jos kiertoheitahdut ja pystysuuntaisten värähtelyjen vaimenemisnopeudet ovat erisuuria ($\lambda_2 \omega_2 = \lambda_3 \omega_0$). Siten flutteriderivaatat \tilde{H}_1, \tilde{H}_2, \tilde{A}_1 ja \tilde{A}_4 voidaan kaavoja (9) käyttäen määrittää luotettavasti vain, jos kokeessa pystytään järjestämään vaimenemisnopeudet yhtäsuuriksi ($\lambda_2 \omega_2 = \lambda_3 \omega_0$). Esimerkkejä vapaasti värähteluvallakin poikkeilkausmallilla määritetystä siltapoikkeilkaussten flutteriderivaatoista on esimerkiksi Scanlanin ja Tomkon artikkelissa [7].
YHTEENVETO

Artikkelissa on esitetty johdanto suurten siltojen aeroelastiiikan ja käsitelty tuulitunnelikokeiden suoritusta keskitteen matemaattisten mallien lähtötietoina tarvittavien jäykistyspalkin stationaaristen aerodynaamisten kertoimien ja flutteriderivaattojen määritykseen.

LÄHTEET

Risto Kiviluoma, tekn.lis.
Teknillinen korkeakoulu
Sillanrakennustekniikka
PL 2100
02015 TKK