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In recent years considerable interest has been shown in the development of feedback 
procedures (adaptive strategies) by which a required accuracy of the finite element 
solution can be most economically reached. There are many studies where is tried to find 
good error indicators to show where to refine. But in nonlinear problems the question 
when to refine is as important as the question where. 
In this work p-hierarchical elements are used in the nonlinear curve design problem and 
different strategies how to refine during the iteration process is compared. First method 
is to use an iteration stopping criteria with a variable tolerance. At the beginning it is 
quite rude and when the calculation proceeds the criteria is tightened causing more 
iteration cycles with more degrees of freedom. The other method is to choose some fixed 
number of iteration cycles after which the refinement is made. These strategies are 
compared numerically using two different error measures. 

INTRODUCTION 

The important work ofBabuska and his collaborators on adaptive finite element methods 

has generated considerable interest in this subject in recent years. An overview of this 

work is available in references [1] and [2] and more details can be found in references 

therein. 

Finite element computer programs are self-adaptive when they have a local error 

indicator capability and a capability to assign automatically additional degrees of freedom 

to those regions where the indicated error is the greatest. Self-adaptive finite element 

computer programs can be designed to utilize the results of an available solution in 

obtaining succeeding solutions. These programs can be based on h- or p-convergent 

approximations or on combinations of both, hp-version. The objective of an adaptive 
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method is to analyse the potentially most important contributions of higher order terms 

and to incorporate them to the solution in a sequential fashion until the desired level of 

accuracy has been reached. 

In order to investigate p-convergence, a finite element computer program having the 

capability to vary the polynomial order over the finite elements either selectively or 

uniformly from three to eleven has been coded. Based on this computer program, studies 

have been carried out concerning the behaviour of adaptive procedures in a nonlinear 

curve creation problem. In this paper is discussed one important question in the adaptive 

procedure: when to increase the order of polynomial approximation. 

FINITE ELEMENT DISCRETISA TION OF THE PROBLEM 

The curve creation problem considered here is the same as in reference [3]. The curve is 

described parametrically. Thus the FEM representation for the curve in x,y-plane is 

(I) 

A L A y=Nb= Nb • I I (2) 

where N is the shape function matrix and a and b are lists of nodal parameters. Shape 

functions Ni are in each element functions of parameter ~. ~ e [ -1,1) and the derivatives 

in the nodal parameter lists are with respect to parameter ~ . The functional under 

minimization is the length of the curve 

(3) 

The constraint is the area enclosed by the curve y = y(x) and the x-axis in the interval 

[q,r) 

(4) 
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When the equations (1) and (2) are substituted into equation (4) we get linear constraint 

equation 

(5) 

where the element contributions are 

(6) 

When equation (2) is substituted into equation (3) and the integration is thought to have 

been carried out, the length L is controlled by b, which now contains the only unknowns. 

We now have to find b which minimizes L and satisfies equation (5) plus possible 

pointwise constraints. In using the Lagrangian procedure we first write a modified 

function 

r• = L(b) + A.(Gb- A) (7) 

Demanding t to be stationary w.r.t. b and A, the equations obtained are 

(8) 

Gb-A =0 (9) 

From equation (3) we see that the typical element of the vector ~ is (before going into 

parametric form) 

(10) 

From equations (2) and (10) we see that if the square-root term would be nonexistent, 

then the right hand side of (I 0) would be linear in b1. Because other terms in equations 

(8) and (9) are linear in b1, we can try to find the solution iteratively by approximating 

during the qth iteration cycle the denominator by the values of the previous cycle. Hence 

we obtain for the qth iteration cycle 
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JL(q) A 

-A-=~ K(q) b(q) 
db ~ If] 

I J 

(II) 

where the typical element contribution is 

Ke<q> - J1 1 N N dJ: 
if - ~ i>x J•xX,~ ':> 

-1 1 + (y .~q-1) i (I 2) 

Hence, during iteration cycle q we have to solve a linear system of equations (vide 

equations (8) and (9)) 

(13) 

However, before solution the given values for elements of b must be inserted. 

Convergence of the iteration is followed by calculating after each cycle the current value 

for the length L. Iteration is stopped when the improvement (relative shortening) is under 

a preset limit. 

HIERARCHICAL ELEMENTS 

To achieve continuity of the function itself and its first derivative, the element type used 

here is the one-dimensional Hermitian isoparametric element with two nodes. The nodal 

parameter vector for a typical element e is 

A ]T (x,~h (I4) 

and an analogous expression for be. The interpolating functions are the first order 

Hermitian polynomials H~ (i = 0, 1; j = 1,2). 

Hierarchical finite elements may be defined as those in which successive refinements are 

additive in the manner of additional terms in a typical Fourier series. The hierarchical, 

additional degrees of freedom are introduced in using Legendre-type surplus functions 

S;, which have zero values and slopes at nodes, as shape functions Ni+5, i.e. the same 
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kind of functions as Delpak and Peshkam used in reference [4]. Computational 

experience has shown that basis functions based on Legendre polynomials have good 

properties from the point of view of numerical stability. 

The surplus function of the ith order is defined as 

(15) 

where a(i) = (i! 2; r 1 is a normalisation factor to reduce the values of the surplus 

functions so that IS; (~)I :;::; 1, ~ e [ -1, 1]. 

ERROR MEASURES 

The selection of an error measure depends on the goal of the computation, and on which 

response quantities need to be accurately determined. This is particularly important since 

the smallness of one measure does not guarantee the smallness of the errors in other 

response quantities. Here the accuracy of the solution is estimated by two different error 

measures. 

The first error measure er1 is the relative error in the length of the curve 

(16) 

This is chosen as an error measure because the length of the curve is that quantity which 

is minimized and also the change of its value is used as a criteria to stop the iteration 

process. 

The second error measure er2 is the distance d(u,ii) of ii from u defined with the aid of 

the ~-norm, where u and ii are the exact and approximate solutions respectively 

(17) 
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ADAPTIVE PROCEDURE 

In this section we present the adaptive procedure used and concentrate on the question 

when to refine. Because for nonlinear problems only a few results have been obtained 

using hierarchical refinement, the author has find just two references where this question 

has been treated. Rank and Werner [5] have made refinement after every iteration step 

and in [ 6] Oden et al. just generate a new mesh 'after each of a specified number of time 

steps' but do not mention what this specified number is. 

It seems natural that when solving the equation (13) at the beginning when the mesh is 

coarse, it is not necessary to iterate the solution with the same accuracy as later when the 

mesh is refined. It is so because at the beginning we only want to know where to 

introduce more degrees of freedom. The numerical examples show that the error 

indicators remain stable after only one iteration cycle. But perhaps it is not the best way 

to make refinement after every iteration cycle either. That is because the introduction of 

the additional hierarchical degrees of freedom can cause disturbance at the iteration 

process. So we have to find a compromise between refinement after every iteration cycle 

and refinement after the iteration cycle at which a stopping criteria is satisfied. There are 

two ways to do this. The first way is to choose some fixed number of iteration cycles 

after which the refinement is made. The second way is to use an iteration stopping 

criteria with a variable tolerance. At the beginning it is quite rude and then when the 

calculation proceeds the criteria is tightened causing more iteration cycles when we have 

a finer mesh. 

The numerical example shows that this latter method is better because the refinement is 

most efficient when it is made at every second or third iteration cycle and with the 

changing stopping criteria this is easiest achieved. Like said before, the error indicators 

remain stable already after one iteration cycle, so it can be said where to refine. But two 

or three iteration cycles are needed to stabilize the b -vector in equation ( 13) so that it 

can be used as a starting vector in the iteration process after refinement. 
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EXAMPLE 

The example is a test problem for which an analytical solution exists. It is a modification 

of the classical Dido's problem, 'among curves of given length, find the one that encloses 

largest area together with the straight line connecting the endpoints'. The solution of this 

is simply a circular arc. According to the reciprocity law of isoperimetric variational 

problems the solution is the same as in our problem, 'find the shortest curve enclosing a 

given area'. 

The constraint is the area of a half circle. A mesh of two elements and three nodes is 

used. As boundary conditions only the function value is fixed to zero at the end nodes. 

Also the infinite slope is given as input data at the end nodes. 

First is used the strategy to refine after a fixed number of iteration cycles. The refinement 

is always uniform in this example. In figures 1 and 2 are the errors e,1 and e,2 as a 

function of the number of the iteration cycle using refinement after every cycle, every 

2"d, 3'd, 4th or every 5th cycle. The behaviour of both errors is alike. In every curve is 

clearly distinguished that part where refinements are occurred and that part where the 

maximum p is reached and the curve becomes smooth. 

·2 

·3 

·4 

! ·5 

-6 .£ 

·1 

.a 

·9 

0 

·~:-I 
'.I \ I 
'> •• \ 
I·, ' .. '"~ \... ,, 

' ' ~.., 

·- .1·, .-­
·.·.. I 

·r I ' ' 
' .... 0 .. ,. ................. ,.. \ ..... 

--N=J 

• ·-- - ·N=2 

- ·- • N=3 

- • ·- N=4 

--- N=5 

"'·""'.. .. ........... ~=--~ 
........ ' ...... .. ~ :-.....-;~.;:...-c:-_:~;..:' 

·, -.... ---
10 15 20 25 30 

number of iterations 

Fig. 1 The error e,1 as a function of iteration cycle using refinement after 1 ,2,3,4 or 5 cycles. 
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Fig. 2 The error e,2 as a function of iteration cycle using refinement after 1,2,3,4 or 5 cycles. 

Refinement after every cycle is clearly the worst alternative. Which one is best depends 

on the accuracy wanted. When a very small error is a target, refinement in every third 

cycle is the best choice, but if there is no need for small errors but an error er1 in the 

interval 0.01% ... 0.0001% or e,2 between 1% .. . 0.1% is satisfactory then refinement at 

every second cycle is most suitable although there are no great differences between these 

strategies. When refinement is done at longer intervals, every 4th or 5u' cycle, the result 

gets worse. The situation is the same even if the computation time is considered. 
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Fig. 3 The error er2 as a function of time using refinement after 1,2,3,4 or 5 cycles. 
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In figure 3 is the error e,2 as a function of the time in Jog-log scale, and as can be seen 

the nature of the curves does not change. 

The second strategy is to use an iteration stopping criteria in which the tolerance L1 is 

variable. The idea is to start with a big value of L1 and iterate until this criteria is fulfilled 

i.e. the relative change ofthe length ofthe curve is smaller than L1. Then the refinement 

is done according to the error indicators. Also a new smaller value of L1 is chosen and a 

new iteration is made with these new degrees of freedom. And so on every time when 

iteration stops the refinement is made and a smaller value of L1 is chosen. The difficulty is 

how to choose the value of L1. Four different cases were calculated. In every case the 

method is the same. First the starting value L1 0 is chosen and then an equation 

(18) 

is used, where y is some fixed number. In the following table I are the values of L1 0 and 

y for every case. 

Table 1 The values of L10 and y used. 

Case I 2 3 4 

Lio O.I O.I 0.2 O.I 
y O.I 0.02 O.OI 0.01 

The selection of these values was based on the experience gained on calculating the 

results with the first strategy. The results are shown in figures 4 and 5. There are the 

errors e,1 and e,2 as a function of the iteration cycle number. In these figures is also 

drawn the errors using the first strategy and refinement after every three iteration cycles. 

The differences are not great but perhaps the case C=2 is the best one. As a summary it 

can be said that with this changing stopping criteria it is easier to get the fastest 

convergence rate. The word 'easier' means here that this strategy is not very sensitive as 

to how the values L1 and y are chosen. 
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Fig. 4 The error e,1 as a function of iteration cycle using changing stopping criteria. 
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Fig. 5 The error e,2 as a function of iteration cycle using changing stopping criteria. 
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