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This work presents a global, reliable and systematic methodology, regularized output least 
square method (ROLSM), to treat parameter identification problems. Several applications of the 
method to parameter identification in the problems of fire technology are presented Numerical 
examples of heat transfer in insulated and bare metal structures are presented For each problem 
one ordinmy differential equation is derived from the variational formulation of the general heat 
conduction problem. As an example of the use of the method to mechanical properties of metals 
an identification of multiplicative viscoplasticity law for aluminium alloy AA6063-T6 is illus­
trated Since the inverse problem is usually ill-posed regularization is needed Both regularization 
using mesh coarsing and Tikhonov-regulm·ization (penalized output least square method) are 
used in order to get stabilized solution. The unknown distributed parameters are discretized using 
continuous piecewise linear basis junctions. 

NOMENCLATURE 

specific heat, specific heat of fire protection, specific heat of metal structure 
J/(kg K) 
thickness, thickness of fire protection, thickness of metal structure, m 
force vectors 
heat flux, W/m2 

time, s 
x space dimension, m 
Ap, A5 area of the fire protection and metal structure, m2 

C capacitance matrix 
K conductance matrix 
N; shape functions 

Q, = p ,A,c,d, thermal capacity of the metal structure, J/ K 

QP = p PAPcPdP thermal capacity of the fire protection, J/ K 

Q$ 
T, TP, 
T5, Tg 
T 

elements of capacity matrix of the fire protection, J/ K 

temperature, temperature of protection, K 
temperature of metal structure and surrounding gas, K 
degrees of freedom, temperature vector, K 

emissivity, resultant emissivity and emissivity of the gas 
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thermal conductivity, thermal conductivity of protection and of metal structure, 

W/mK 
v test function 

density, density of fire protection and of metal structure kg/m3 

co-ordinates of the Gauss-integration points 

INTRODUCTION 

An inverse problem is a problem which is posed as inverted compared to direct problems. The 
type of a direct problem [I] considered here is in determining the effect y caused by x when a 

definite mathematical model K is stated: Kx = y. For such direct problems we assume that the 

operator K is well-defined and continuous. Therefore there exists a unique effect of y for each 

cause x; and small changes in x result in small changes in y. Given a direct problem of the type 

just discussed, two inverse problems may be immediately posed. These are the inverse problems 
of causation (given K and y, determine x) and model identification (given x and y, determine 

K ). In the direct problems the existence, uniqueness and stability of solutions is assumed, but in 
inverse problems none of these properties can be taken as granted [I]. 

A common feature of inverse problems is the instability, that is, small changes in the data may 
give rise to large changes in the solution. The computational treatment of such problems requires 
discretization. Small finite dimensional problems are typically stable, however, as the discretiza­
tion is refined, the number of variables increases and the instability of the original problem 
becomes apparent in the discrete model[!). 

The applications illustrated in this paper, the model identification problems in the field of fire 
technology, are of the latter type of the two discussed above. The problems treated are heat 
transfer as a one variable problem in uninsulated and insulated metal structures and one dimen­
sional form ofviscoplastic constitutive equation for metals at high temperatures. 

FORMULATION OF THE PROBLEM 

Consider a coefficient determination problem, i.e. the problem of determining a non-constant 
coefficient a in an initial value problem (Cauchy problem) 

Y = a(y)y + f(y), y(O) =Yo (I) 

on the base of the existing data about the solution y. 

We may interpret this in terms of a coefficient-to-solution operator 

F(a) = y (2) 

where the operator F is defined by 

I 

F(a(y),y,t) = y(O)+ J {a(y)y+ f(y)} dt (3) 
0 

Equation (3) has to be discretized in to chosen number of sub-intervals [t k, t k+I); 
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'· 
y" =/'-1 + J {a(y)y+ f(y)} dt (4) 

Depending on the integration scheme used solving the equation (4) we get explicit or implicit 
methods [2]. In order to avoid the iteration inside the optimization iteration the explic it Euler 
scheme has been used 

(5) 

where h, = t, - t,_1 is the time step. Now instead of the exact equations (3) and (4) we solve 

discretized equations 

F(a(Y"- 1 
), y"-1 ,h,) = Y" and 

F(a(Y"- 1),Y" -1 ,h,J = Y"- 1 + {a(Y"- 1)Y"-1 + f(Y" - 1)}h, 

(6a) 

(6b) 

The non-linear inverse problem (6) has been solved using the output least squares method 
(OLSM). We also have to discretize the distributed unknown parameter a(y) into a certain 

number of sub-intervals [yi'yi+1] of arbitrary length Yi+1 - Yi using suitable almost orthogonal 
M 

bas is functions a(y ) = L Ni(t; ) ai , t; = y I (yi+1 - Yi) . The goal of this method is to find out 
i= l 

the least squares solution for vector of the nodal values iii ' of (9). One seeks unknowns iii' such 

that 

(7) 

where the constraints set D is the class of physically admissible parameters. The data vector 

ji is known only within a certain tolerance 8 . This approximation ji5 satisfying the condition 

(8) 

is known (for example due to the scatter in the experimental measurements) and one therefore 

seeks an a· minimizing 

(9) 

Here .Y% is the vector of measured data. It must be remembered that the number of experimental 

points y;, called collocation points, should be preferably higher than the number of unknown 

parameters a; in order to exploit the whole available data. The minimization problem is non­

linear. Here either Newton or Conjugate Gradient methods are used. 

Because the inverse problem is ill-posed it has to be regularized. In the output least squares 
method (OLSM) the regularization of the problem is achieved by mesh coarsing and by use of 
the available a priori known physical constraints on the parameters. An alternative is to do the 
regularization using penalized least squares method [1] that can be regarded as Tikhonov 
regularization of non-linear problems. In penalized least squares method one seeks a minimum 
for the functional 
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(10) 

where a.(> 0) is a regularization parameter depending on the noise level of the data and 

L =I or some other suitable differential operator depending on the needed regularity of the 
solution. The first term in equation (10) enforces the consistency of the solution when the 
second term enforces its stability. An appropriate balance between the need to describe the 
measurements well and the need to achieve a stable solution is reached by finding an optimal 
regularization parameter. 

APPLICATIONS TO HEAT CONDUCTION PROBLEM 

Semi-discretization of the heat conduction equation 

Using the standard Galerkin method [3] one obtains the variational form of the heat conduction 
problem in 1-D as; 

L aT L aT av L [ ]L 
J pc-vdx + J 'A--dx = fo rvdx- q"'",. 0 
0 at 0 ax ax 

(11) 

with the temperature field approximated by Te (x ,t) = Ne (x)Te (t), where the test and the 

basis functions are 

(12) 

The semi-discretization of the heat conduction equation (1) produces the non-linear initial 
value problem 

C(t,T)T(t) = - K (t,T)T(t)+f(t,T), t > 0 

T(O) = T0 , t = 0 

(13) 

(14) 

where T(t) the global vector of degrees of freedom . Equation (13) is an ordinary non-linear 
differential equation system. Notice that the right hand side corresponds to the force vector 
f(t, T), which contains the boundary terms, as also all possible source terms . Equation (16) is 
to be complemented with appropriate initial conditions (14). 
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Insulated metal structure 

Consider a case of an insulated steel structure. 
The problem can be dealt as one dimensional 
problem using two elements (Fig I). One 
element is used for the steel part and one 
element for the insulation part. For the steel 
part it is assumed that the temperature is 

uniform (one basis function N 1 = 1, one trial 

function v = 1 ) . For the insulation one element 
with linear interpolation polynomials is used. 
With these assumptions the global capacity 
matrix is 

c = [Q,+Q~ 
+Q~ 

Steel section 

Temperature 
approximation 

Protection 

Figure 1. One dimensional idealization of insu­
lated steel structure in jil·e. 

(15) 

d I 

where Q, = p, A, cJT,)d, and Q~ = ; J p P(T(C,))cp(T(C,))N;(C,)Nj(C,)AP dC, . 
- I 

The global conductivity matrix is 

1 I [+1 /2 -1/2]· 
K = - f AP(T(C,))AP d'E, +

112 dp - 1 -112 
(16) 

The unknown temperature vector isT = {T,,Tpb}T, where T, is the temperature of the metal 

and Tpb is the temperature of the fire protection at the boundary x=L=d,+dP. We assume an 

adiabat ic boundary condition q" = 0 at x=O and a prescribed temperature boundary condition 

r;,b = T8 at the boundary x=L. This means that the temperature at the boundary of the insulation 

is the gas temperature of the surrounding fire . We get only one equation: 

. J:: A /d QP . 
T + P P P (T - T ) = - 12 T 
s Q,. + Ql~ s g Qs + Q~ g 

~ 1 I 

where the notations A =- J A P (T('E,))df, , 
2-1 

d I 

Q, = p,Ascs(T,)ds and Q~ = ; J p p(T(C,))cp{T(C,))N;('E,)N/'E,)AP dE, 
-I 

have been used. 

(17) 

(18) 

In the case when thermal conductivities and capacities are constants and do not depend on the 
temperature the equation (17) will take the form : 
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(19) 

Here notations $ = QP I Qs, Q, = C5 p s V, have been used. 

The equation ( 19) is the same as the equation derived by Mel inek and Thomas [ 4] and consid­

ered by them to be the best when QP I Qs << 1. The equation is nearly the same as an equation 

proposed by Wikstrom [5]: 

. 'A p AP I dP . 
~= (~-~)-[exp($110)-1] ~ 

c, p, v, (1+$ 13) 
(20) 

The equation ( 19) is preferred in applications presented here because no assumption has been 
made on the gas temperature history. Wikstrom's solution has been truncated from an analyti­
cal solution, where the gas temperature is based on the standard IS0834 curve. 

The inverse solution of equation (19) is achieved by minimizing the equation (1 2), where 

l (f) ( = r; (t)) is the measured temperature of the metal structure, y (t) ( = T, (I)) is the 

solved temperature of the metal structure. The discrete coefficient-solution operator (9) is in 
this case 

'A (T"-1)A ld h.l6 
F(TII-1 h ) = T"-1 + p p p p (T"-1 - Til - l )h - 'I' T"-1 

s , II s c, p .I vs (I+$ I 3) g I II I + $ I 3 g 
(21) 

where TP = (T, + Tg) I 2 is the temperature in the middle of the protection (one Gauss point 

integration scheme). 

Numerical example 1: Steel section protected with intumescent paint 

Fire protection materials of steel structures are studied in Nordic countries according to 
NORDTEST method NT FIRE 021 [6]. In the method the protected steel column is placed in 
the horizontal furnace. The temperature of the steel and also the gas temperature near the 
protected section are measured by thermocouples. According to the method NT FIRE 021 the 
thermal conductivity of the protection material is calculated as a function of time using the 

equation (26) and the derivatives T, of the measured steel temperature. Small deviations in the 

measured temperature data may cause large differences in the calculated thermal conductivity. 
That is why the measured temperature is smoothed. 

The method is also applied to intumescent paints that expand during the test and for which the 
equation is not actually valid . The thermal conductivity is calculated assuming that the material 
do not expand and maintains its original thickness. The calculated thermal conductivity is then 
not a real but an effective one that can be used in the design procedure of steel structures. 
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In the Fig.2b) the thermal conductivities calculated using ROLSM are shown. The discrete 
operator (27) and test results of a commercially available intumescent paint are used. In Figure 
2a) the furnace temperature and the measured and calculated temperatures in the steel specimen 
are shown. 
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Figure 2a) Furnace temperature, measured and calculated temperature of the steel specimen, 
b) thermal conductivities of the intumescent paint as a result of the inverse solution. B2, B3 and 
B5 are the identification numbers of test specimens. 

Numerical example 2: Gypsum board. 

Cone calorimeter tests in horizontal configuration at a heat flux level of qcone = 25 kW/m2 were 
performed. The test specimen consisted of a 13 mm thick gypsum board (density 721 kg/m3

) 

laying on a 30 mm thick layer of mineral wool (Fig. 2) . The surface area exposed to the heat 
flux was A 1= I 00 mm x I 00 mm. There was a I 0 mm thick aluminium plate under the gypsum 
board in the second test. In the first test, there was no aluminium plate present.. The tempera­
ture of the upper surface of the gypsum board was measured using an infra-red temperature 
measuring device The temperature profile inside the specimen as a function of time was meas­
ured. 

1111111111 ~ 25 
kW/m

2 

1111111111 ~ 25 
kW/m

2 

: G b d 1 ~ IR--temperature measurement 
1 ypsum oar « 
I 

Mineral wool 
Mineral wool 

Thermocouples 
lL_~\L..4.S==::\f=:::.r-

Figure 3. Idealized test arrangements in cone calorimeter tests. a) test without aluminium plate 
b) test with aluminium plate. 
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In the first test case (without aluminium plate) the specific heat of the gypsum board was 
calculated. The specific heat is discretized using piece-wise linear basis functions with respect 

to the temperaturec(T) = L Nja/T). The conservation of energy in the gypsum board can be 

written as 

J pcTdV =- J q ·iidf + f prdV (22) 
v av v 
The source term in the equation is incorporated into the effective specific heat. The equation 
(22) reads as 
. A 

T(t) = +qcone -~-1 - = J(T(x;t),t) (23) 
pc(T)V 

where the function 1 is defined by 1 (I)= 1 I d J f(x;t)dx. The ODE (29) is integrated numeri­
d 

cally using an implicit Euler scheme; 
lk+l 

T(tk+l) = T(tk) + J J(T('t),'t)dc "'T(tk) + J(f(tk),tk)hk (24) 
,, 

The specific heat capacity c(T) was the regularized solution of the constrainted minimization 
problem 

min(IIT(t)-Tcalc.(a;t)f +aiiLaf} with a . E D(a) 
1 

(25) 
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Figure 4!. a) Calculated specific heat of the gypsum board measured in a cone calorimeter 
experiment at 25 kW!n/ b) Measured swface temperature, bold lines, the calculated in thin 
line. 
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Figure 5. a) Calculated specific heat and thermal conductivity of the gypsum board measured 
in a cone calorimeter experiment at 25 kW!n/. Test data for the thermal conductivity according 
to Pettersson [7] is shown for comparison. b) Measured swface temperatures and the tempera­
ture of the aluminium plate, bold lines, the calculated in dotted thin line. 

The solution is seeked from the domain of physically addmissible functions which takes into 
account the possible range of the unknown parameters aj The equation (31) is nonlinear. The 
solution is found using Newton method with the discrepancy principle as the stopping criteria. 
This means that the Newton iteration number n during the iterative solution of minimization 

(25) is stopped when the residual llr8 
(t)- ~alc.(a~(n);t)ll"" Ro is reached for the first time, 

with R = 1.6 and a= 0.0000 I. The accurancy of the temperature measurements is assumed to 

be llr8 (f) - T(t)ll ::;8"" J2° Cdt ""98 ° Cs . 

too 

The results of the calculations are shown in Fig. 4. The relative amount of humidity (mass of 
water I total mass of gypsum) in the gypsum board was calculated from the peak of the specific 
heat and was found to be equal to 21 %. Experimental results show that the the water content 
of gypsum boards is about 18 % in the temperature range < 200 °C. 

The second test specimen was similar to the first one execpt directly under the gypsum board 
I 0 mm thick aluminium plate was present. The temperature of the test specimen was recorded 
as in the first example. The temperature distribution inside the gypsum board was approxi­
mated to be linear and the aluminium temperature a constant. Equation (25) with discretization 
(27) was used in modelling the direct problem. Here both the specific heat and the thermal 
conductivity were discretized using piece-wise linear basis functions with respect to the tem­
perature. Figure 5 shows the results. The thermal conductivity of gypsum according to Pet­
tersson [7] is shown for comparison. 
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Bare metal structure and numerical example: aluminium specimen in heated oven 

Consider a bare metal structure without fire protection (Fig. 6). We use only one finite element 

with one basis function N1 = 1 which is the same as assuming the temperature to be constant 

in the solution domain. Applying the Galerkin method (v = 1) the variational formulation is 
following: 
d, 

f c,.(T) p,(T)A.dx T = q"(O) Aro -q"(L) ArL (26) 
0 

Assume the radiative and convective boundary conditions at the boundary x=L .; 

q 11 (L)=hcC~-Tg)+E <llcr (T,.4 - T;) . The structure and gas are assumed to be two infi-

nitely long parallel plates, for which the following relation ap-

plies : E <P1_2 = E r = (1 IE+ 1 IE g -1r'. Here E is the emissivity of the structure and E g is 

the emissivity of the gas and E r is the resultant emissivity. We also combine the two boundary 

conditions in a following way: h (T, TJ = he + E r cr (T2 + ~2 )(T + TJ and get finally an 

equation: 

. h ArL(Tg -T,) q"(O) Aro 
T = + --------------
' c,(T) p ,(T )A. ds c,.(T) p,(T )A. d, 

(27) 

We may now assume that the heat flow through the boundary is a function of the temperature 

of the metal structure q" = q" (0, T,) . If the heat flow through the boundary is not taken into 

account (qn=O) the equation (27) will take the traditional form used in the fire design of steel 
structures. 

Metal structure 

Figure 6. One dimensional idealization of an uninsulated metal structure infil·e. 

Consider a case were an uninsulated aluminium specimen is placed in an oven in order to be 
tested at high temperatures. The specimen is surrounded by the oven, but the ends of the 
specimen are clamped into the steel rods, so a part of the heat flow escapes through the ends of 
the specimen. The problem is dealt as one dimensional according to equation (29), where the 

heat loss q" = qJO, T,.) has been assumed to be function of the aluminium temperature. The 

inverse solution of the equation (29) is achieved by minimizing equation (12), where 
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/ (t) ( = r; (t)) is the measured and y (t) ( = T, (t)) the solved temperature of the aluminium 

structure. In this case the discrete coefficient-solution operator is: 

1- (T"- 1 T"- 1) A (T"- 1 - T"- 1) (T"- 1 0) A 1 g , ,. rL g _, q" _, , ro 
F(r;•-l ,h

11 
) = r;•-l + h" + ------h

11 

c, PsAs d, cs PsA, d, 
(28) 

where Ar~. is the area of the specimen exposed to the heat and Aro is the sum of the areas of 

the ends efthe specimen. 

The tests have been carried out at HUT in the Laboratory of Structural Mechanics using the test 
facilities of the Laboratory of Steel Structures in a project dealing with the high temperature 
properties of aluminium. The temperature of the oven was controlled to obtain a constant 
temperature of the specimen during the steady-state tests. In transient tests the oven 
temperature had a fixed changing rate, which was hoped to cause constant temperature rate of 
the specimen. The heat flow through the ends of the specimen and the slow heating rate at the 
beginning were problematic. The reason for the problems was the good conductivity and low 
emissivity of the aluminium . 

Parameters E,q
11
(T, ,O) were approximated as piecewise linear functions of the aluminium 

specimen temperature T,.. Convection coefficient h was assumed to be constant. The 

parameters were solved by fitting a one test. The solved parameters are shown in Fig 6a. The 
measured temperatures of the oven and specimen and also the calculated temperature of the 
aluminium specimens are shown in the Figures 7b and 8a-b. 

Thermal properties Transient tests 
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Figure 7a) Thermal properties obtained by the inverse solution b) measured and calculated 
temperatures of aluminium specimen in heated oven, transient test. 
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Figure 8a) and b) A1easured and calculated temperatures of aluminium specimen in heated 
oven. 

IDENTIFICATION OF MULTIPLICATIVE VISCOPLASTICITY LAW 

The uniaxial expression of the multiplicative model presented by Chaboche and Lemaitre [8] 
including the linear elasticity law, viscosity -hardening law is 

E=E.+EP+Er 

a= E(T)Ec (29) 

where N, M, K and E are three material parameters, which are functions of the temperature T. 
N is the viscosity exponent, M is the hardening exponent, K is the coefficient of resistance and 

E is the modulus of elasticity, E e is the linear elastic, E P the viscoplastic, E T the thermal 

strain and E P is the rate of the viscoplastic strain. The viscosity exponent N has a value of the 

order of 2 for very viscous materials and of I 00 for slightly viscous materials which warrant a 
plasticity law; the hardening exponent M varies approximately between 2 and 70; the magni­
tude of the coefficient of resistance K varies from 100 to I 0 000 MPa. The different results 
from tension tests, creep tests and relaxation tests can be predicted with a constitutive law with 
three parameters which represent the viscoplastic phenomena under monotonically increas ing 

strain ( E ~ 0) rather well. 

The hypothesis of partitioning the total strain into an elastic and inelastic, viscoplastic strains 
has been used in the law. An instantaneous plastic strain has been assumed to be nonexistent in 
the framework of the present treatment. 
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We may interpret equation (30) m terms of a coefficient-to-solution operator 

F(a(T) ,E" ,t) = E 0 , where 

F - cr cr d cr 
1 ( )N(T)( )-N(T) IM(T) 

a E t - - - E --- !+--
( (T) , (J' ) -I E(T) (J E(T) E(T) (30) 

and a(T)=(K(T), M(T), N(T),E(T))'~'is the vector of unknown parameters and 

E " = E - E T is the stress dependent part of the total strain. 

When explicit Euler scheme is used one gets instead of exact operator an approximation; 

F(a(T),E" , t) = E~, where 

Fa T EII- I t = EII- I + _cr__ EII- I _ _ cr__ h + -cr __ 
( 

n-l )N(T) ( 11 _ 1 )-N(T) I M(T) 11 _ 1 

( ( ) , (J ' ) (J E(T) (J E(T) II E(T) (31) 

The whole temperature interval studied is discretized into a chosen number of subintervals 

[1; , 7;. ,] . The parameters a (= K(T) , M(T), N(T),E(T)) are approximated as piecewise 

linear functions of temperature: a(T) = (1-~)a; + ~ ai+l for each temperature interval 

T E ['I;, 7;.1 ] , ~ = T I (7;.,, 'I;) , separately. Higher polynomial approximations were avoided, 

because they cause problems in the stability of the solution if the polynomial functions do not 
form an o1ihogonal base. The unknown parameters were seeked to minimize: 

(32) 

Both steady-state and transient tests were conducted for aluminium alloy AA6063-T6 at high 
temperatures at HUT, Laboratory of Structural Mechanics. The test results have been used in 
the identification of the law. The hardening tests at constant temperature (steady-state tests) 
were carried out with two equal tests at deformation rate 0,18 mm/min and one test at deforma­
tion rate 1,8 mm/min at temperatures I 00 °C, I SO °C, 200 °C, 22S °C, 2SO °C and 300 °C. Three 
tensile tests were carried out at room temperature to determine the mechanical properties of 
aluminium alloy AA 6063-T6 at room temperature. 

In the transient creep tests (constant load, varying temperature) the oven was controlled so that 
the oven gas temperature rate was 10 K/min. Transient state tensile tests were carried out with 
two equal tests at each stress level of3, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 190 MPa. 
The thermal strain of the aluminium alloy was determined with three tests at load level 3 MPa. 

At first, the parameters were solved at constant temperatures 'I; = I 00 °C, I SO °C, 200 °C, 
22S °C, 2SO °C and 300 °C using the steady-state results at two deformation rates. After that 
some of the transient results were used to calculate parameter values at temperature range 
20 °C-400 °C using the temperature step 2S °C. 

Figures 9a show the values of Young's modulus E and coefficient of resistance K as a function 
of temperature. In Fig. 9b the viscosity and hardening exponents N, M obtained by the minimi-

99 



zation algorithm are shown. In Figures I 0-11 both the experimental results and calculated ones 
are illustrated. It can be seen that the multiplicative viscoplasticity law ofChaboche and Lemai­
tre satisfactorily predicts behaviour of aluminium alloy AA6063-T6 in transient tests and in 
steady state tests of different strain rates. 

CONCLUSIONS AND ACKNOWLEDGEMENTS 

Several applications of the regularized output least square method (ROLSM) to the parameter 
identification of the heat transfer in insulated and bare metal structures were presented. For each 
problem one ordinary differential equation was derived from the variational formulation of the 
general heat conduction problem. Although, the examples shown consist only of a one ODE, the 
method is directly applicable to the system of ODE obtained by the semi-discretization of the 
variational formulation. As an example of the use of the method to determine mechanical proper­
ties of metals, an identification of multiplicative viscoplasticity law for aluminium alloy AA6063-
T6 was illustrated. In the case of a constitutive equation identification, the method can be 
generalized to tests where several components of the strain rate tensor are considered as well. 

The authors hope that the small variety of problems presented in this paper reveal the huge 
possibities that the use of systematic methods of variational formulation (FEM) and the inverse 
solution technique (ROLSM) has to offer to modelling and to model identification . 
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Figure 9. The parameters of the multiplicative viscosity law for aluminium alloy AA6063-T6 as 
a result of the ROLSM inverse solution. 
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Figure 11 a) Hardening test results and calculated solution at temperature 100 °C and at 
temperature 300 °C 

The applications presented in this paper were developed in "VTT/STEEL" program funded by 
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