
ELEMENT BY ELEMENT POSTPROCESSING IN THE FINITE ELEMENT 

METHOD 

Harri Isoherranen 

Jukka Aalto 

ABSTRACT 

Rakenteiden Meka.n.llkka, Vol. 29 
Nro 2, 1996, s. 19-30 

This paper deals with postprocessing method by which the result of a conventional finite 

element analysis can be improved. If the improved solution is good enough, difference 

between the improved solution and the exact solution can be used as an approximaton 

for the actual error. Thus the error of the conventional finite element analysis can be 

computationally estimated /3/. 

INTRODUCTION 

An efficient, element by element recovery procedure, which uses local polynomial 

representation containing the information from the field equations using a technique 

based on truncated polynomial series of the residual of the field equation, has recently 

been presented by the authors in reference Ill. This paper presents a similar, slightly 

different procedure, in which the information from the field equations has been put into 

the representation using the method of weighted residuals. 

BOUNDARY VALUE PROBLEM 

Consider a boundary value problem in two dimensions governed by a set of n second 

order linear partial differential equations of form 
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Lu+ f = 0, in Q , (1) 

where u( x, y ) is n x 1 vector of unknown functions of the problem, L IS n x n 

differential operator matrix and f ( x, y) is n x 1 vector of known functions . 

LOCAL POLYNOMIAL REPRESENTATION 

Let us first represent the unknown u(x,y) locally within the recovery element 

considered using a polynomial of degree p as 

where 
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are dimensionless co-ordinates, x and y are physical co-ordinates, x0 and Yo are co-

ordinates of the element center and h is a characteristic length of the element. The 

parameters llrs are unknown. 

The representation (2) can be expressed in matrix form as 
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where 
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and 
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where I is a n x n unit matrix and the superscripts in matrices pP and UP refer to the 

degree of the polynomial representation of ii . 

"BUILDING-IN" THE FIELD EQUATIONS 

It is demanded that the local representation ( 4) satisfies the field equation ( 1) within the 

recovery element in an average sense. This is done by first forming residuals of the field 

equations 

tJL(ii) = £ti + f (7) 

and then writing weighted residual equations ofform 

J( pP-2 
( tJL(ii )dA = 0 . 

(8) 

Ae 

With the help of equations ( 4) and (7) these equations reduce to 

HUP +F=O, (9) 
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where 

H= f(Pp- 2t L PPdA 
(10) 

Ae 

and 

F =I (pP-2(! dA . 
(11) 

Ae 

Equations (9) are n(p-J)p/2 constraint equations between the n(p+ J)(p + 2)12 parameters 

UP . Thus it is possible to choose n(p+ J)(p+ 2)12-n(p-J)p/2=n(2p+ 1) of these 

parameters as independent parameters aP . The remaining n(p-J)p/2 of the parameters 

UP can be solved in terms of aP using equations (9). This solution is possible, if the 

independent parameters aP have been chosen appropriately /2/ and requires inversion of 

a square matrix of dimensions n(p-l)p/2 . Consequently the original parameters UP can 

be expressed in terms of the new, independent parameters aP by 

(12) 

where S P and T Pare matrices of constants /2/. Substituting the result (12) into equation 

( 4) finally gives 

(13) 

where 

(14) 

and 

(15) 

Equation (13) is local polynomial representation of the unknown, which contains the 

information from the field equation 'built-in". The corresponding representation for the 

derivative quantities of interest y = Vu is obtained straightforwardly and is 

(16) 
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where 

(17) 

and 

Yb = Vub. (18) 

EQUATIONS FOR THE UNKNOWNS 

Two types of equations for the unknown parameters aP have been used. 

First it is demanded that at each node i of the recovery element the smoothed 

unknown 'ii is equal to the corresponding nodal value II; (ofthe original finite element 

approximation u ). Thus we get equations 

ii(x;, y;) =II;, i = 1, ···, m, (19) 

where m is the number of element nodes. 

Second it is demanded that the local derivative quantities y coincide with the 

corresponding consistent ones r at special sampling points (superconvergent points of 

the derivatives or other suitable sampling points) within the element. Thus we get 

equations 

(20) 

where n is the number of sampling points of the element. 

The least squares technique is used to solve this overdetermined set of equations. The 

equations are first made dimensionally homogeneous by multiplying the second equation 

type with the characteristic length h. Thus the corresponding least sqares function is 

Ill 

II= L wf[ii(x;,Y;)- U; f[ii(x;, Y;) -II;] 
(21) 

i=l 

II 

+I. w~h2 [Y(xk, Yk)- y(xk, YkJf[r(xk, Yk)- y(xk, Yk)] 
k=l 
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where the summation indices i and k refer to nodes and derivative sampling points, 

respectively and w 1 and w 2 are dimensionless weighting factors, whose values can be 

found by numerical experiments. 

GLOBAL SMOOTHED DERIVATIVE QUANTITIES 

The global smoothed derivative quantities y( x, y) are expressed by using the same co­
continuous finite element approximation as the original finite element solution tl( x, y) of 

the problem. The nodal values y,. of y are obtained by evaluating element by element 

the values of the local representation r at the element nodes and taking nodal averages 

(weighted by element areas) of them. 

NUMERICAL EXAMPLE 

Plane elasticity problem 

An infinite plate with a circular hole (figure 1) subjected by unidirectional tension u 00 

was dealt with. 

G, v=0.3 

Figure 1: Infinite plate with a circular hole. 
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The analysis was performed using quadratic Lagrange and Serendip quadrilaterals. Qubic 

local representation (p=3) for the displacements corresponding to quadratic 

representations for the strains (or stresses) was used. In connection with quadrilaterals 

the 2x2 Gauss points (which are superconvergent points of the derivatives) were used as 

derivaties sampling points. Based on preliminary numerical tests the ratio w1 :w2 =1: 1 of 

the weighting factors was used /2/. 

Figure 2 presents result of experimental convergence study using quadratic Lagrange 

quadrilaterals and Figure 3 presents result of quadratic Serendip quadrilaterals. In figure 

the left one, (a) shows a comparison of the error of the smoothed solution obtained with 

the present technique and with the Zienkiewicz-Zhu Superconvergent Patch Recovery 

(SPR) technique /4/ and the error of the consistent (original finite element) solution. The 

right one, (b) shows a comparison of the corresponding error estimates and the exact 

error of the consistent solution. 

The error of the smoothed solution is remarkably smaller than the error of the 

consistent solution with both coarse and dense grid. The corresponding rate of 

convergence is also excellent and comparable with that of the SPR technique. The error 

est imate remains good with both element types and with all grids which were used. 
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Figure 2: The circular hole problem with quadratic Lagrange quadrilaterals: (a) error 

of the smoothed and consistent solution (b) error estimate and exact error. 
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Figure 3: The circular hole problem with quadratic Serendip quadrilaterals: (a) error 

of the smoothed and consistent solution (b) error estimate and exact error. 

Two-dimensional quasi-harmonic equation 

Let us consider the two-dimensional quasi-harmonic equation 

(22) 

where ifJ( x, y) is the unknown potential, kxx, kxy and k yy are the conductivities and 

Q(x:,y) is the source term, as our second model problem. The function 

(23) 
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was chosen to be the analytical solution of the problem in square domain (figure 4). The 

corresponding source term Q(x,y) was obtained using the field equation (1) . 

/ 

a 

a 'I / 

Figure 4: Quasi-harmonic problem in square domain. 

The analysis was performed using quadratic Lagrange and Serendip quadrilaterals . 

Qubic local representation (p=3) for the potential corresponding to quadratic 

representations for the derivatives were used. The same derivative sampling points and 

the same weighting factors as in the case of plane elasticity problem were used. 

Figure 5 presents result of experimental convergence study using quadratic Lagrange 

quadrilaterals and figure 6 presents result of quadratic Serendip quadrilaterals. 

The error of the smoothed solution is remarkably smaller than the error of the 

consistent solution especially with coarse grids. The corresponding rate of convergence 

is excellent and comparable with that of the SPR technique in connection with quadratic 

quadrilaterals. The error estimate, however, seems to be good with both element types 

and with all grids which were used. 
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Figure 5: The square domain problem with quadratic Lagrange quadrilaterals: (a) error 

of the smoothed and consistent solution (b) error estimate and exact error. 
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Figure 6: The square domain problem with quadratic Serendip quadrilaterals: (a) error 

of the smoothed and consistent solution (b) error estimate and exact error. 
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Finally it is interesting to study the cost involved in using these recovery procedures. The 

cost of the computation of present and SPR-method is compared to original finite 

element solution (FEM) in figure 7. 

Figure 7: 
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Relative computation time m quasi-harmonic square domain problem 

present and SPR-method compared to original finite element solution 

(FEM) using quadratic Serendip quadrilaterals. 

CONCLUSIONS 

An efficient and computationally simple element by element derivative smoothing 

technique has been presented. It works well with quadratic isoparametric elements. In 

connection with quadratic quadrilaterals (Lagrange and Serendip) numerical results for 

smoothed derivatives are excellent and comparable with those of the SPR-technique. 

Zienkiewicz-Zhu error estimates /3/ based on this procedure seem to be sufficiently 

accurate for practical purposes evenwith very coarse grids. 
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