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Several criteria for the onset of matrix cracking in brittle FRP-composites have been reviewed 

and different methods to determine the stress distribution in cracked cross-ply laminate in 

conjunction with fracture based criteria have been compared with each other. A critical 

survey of these criteria showed that due to heterogenity of composite material, statistical 

variability of the mechanical properties and enviromental effects, gross simplifications in the 

crack growth characterization of these materials must be made. Consequently, the criteria 

presented here may be applicable only to very limited type of specimen geometry, material 

configurations, enviromental conditions, and loading types. 

INTRODUCTION 

The use of composites in load bearing structures is primarily motivated by the low weigth-to­

stiffness and weigth-to-strength ratios. In the design phase the stiffness characteristics of a 

composite can be determined fairly accurately by rigorous rnicromechanical methods. 

However, despite the extensive research work on the field of composite materials, a 

comprehensive failure criterion for the composites has not yet been introduced. There are 

serious doubts that a general failure criterion could actually be achieved. The anisotropy, 

heterogeneity, and vulnerability due to environmental effects bring a large number of variables 

to composite design that are usually related to each other. This makes the detailed analysis 

of composite structures a formidable task. 
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The matrix failure has received considerable attention in literature. Several micromechanical 

models that consider the initiation of matrix failure and/or the stiffness loss due to damage 

are established. As a contribution to this field, we review some of the most important papers 

of the initiation of matrix fa ilure in order to give the reader guidelines for further study. We 

also compare some failure criteria for matrix cracking (intralaminar cracking) to analyse the 

wlidirectional tensile test of cross-ply laminates. 

An outline of the study is as follows. First we describe the physical aspects of failure of the 

composites. Then we review some criteria of the onset of the transverse matrix cracking. 

Finally we present the comparison between the various matrix cracking criteria. 

FAILURE OF FIBER REINFORCED COMPOSITES 

Unidirectional composites 

The longitudinal tensile behaviour of wlidirectional composites is governed by the fibers, 

whereas the remaining responses are very much dependent on the matrix properties. It 

follows that the remaining responses show some degree of nonlinearity which is due to 

damage and yielding of the matrix material. The nonlinearity is usually more pronounced in 

transverse compression and in-plane shear behaviour than in longitudinal compression and 

transverse tension response (Chamis (1974)) . 

In the failure analysis the composite material cannot be considered as a mixture of materials 

but as a structure. The wlidirectional composite consists of strong and stiff fibers embedded 

in relatively weak matrix, and, consequently, only the fiber, the matrix, or the bonding 

between these two material phases can fail (Hart-Smith (1992)). 

According to Hashin (1980), the primary failure modes in the wlidirectional composites are 

a fiber mode and a matrix mode. In the fiber mode the composite fails because of fiber 

rupture in tension or due to buckling in compression and in the matrix mode a plane crack 

parallel to the fibers appears. This suggests that the failure surface can be expressed as a 

piecewise smooth envelope in the stress or strain space rather than a single smooth function 

as it is proposed by the quadratic failure criteria (e.g. Tsai-Wu, Tsai-Hill). 
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Composite laminates 

There are four primary failure modes in FRP (fiber Reinforced f.lastics) composites. These 

modes are matrix cracking, fiber/matrix debonding, fiber breaking, and delamination. The 

development of these failure modes is shown schematically in figure 1 (Reifsnider ( 1983)). 

Figure 1 shows that the initiation of damage is dominated by the matrix cracking in the off­

axis plies. These cracks run parallel to fiber directions and are usually spanning the width of 

the specimen (Flaggs and Kural (1982), Wang (1984)). The number of cracks grows 

monotonically with increasing load, and it tends to reach a periodic saturation pattern (CDS) 

that marks the initiation of a new damage mode. In this new damage mode secondary cracks 

originating from transverse cracks appear in the interlaminar planes. Subsequent damage 

consists of delamination initiated from these secondary cracks and leads to highly localized 

damage with fiber failures and finally to fracture (Talreja ( 1987)). 
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Figure 1. Damage development in [0/90/90/90/0]-laminate. 

Matrix cracking 

The formation of matrix cracks does not necessarily lead to a catastrophic failure but it can 

affect the global behaviour of the composite (Bailey et al. (1979), Nairn (1989), Talreja 

(1994)). It decreases the stiffness of a laminate and helps the formation of other failure 

modes. Matrix cracks change the behaviour of laminates under thermal loading, which is 
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undesirable for structures that are designed to jJe dimensionally stable. They can also provide 

pathways for fluids to penetrate into the composite, and this can cause leaks in vessels, pipes 

etc. and accelerated moisture absorption in wet environments. 

Garrett and Bailey (1977) reported that in GRFP-laminates transverse cracks are associated 

with voids and areas of high fiber content, and they may also intersect resin-rich areas. A 

common hypothesis is that microcracks coalesce from local stress raisers such as voids, 

fiber/matrix debonds etc. and when they achieve a critical size, a transverse matrix crack will 

form. In the paper of Garrett and Bailey (1977) it is mentioned that the strain magnification 

factor in the matrix between two closely spaced fibers can be as high as 20. The location and 

density distribution of the observed rnicroflaws are probabilistic in nature, and their size is 

usually the order of fiber diameter. Crossman et a!. (1980) underlined that in [±25/90"] s 

laminates matrix cracks seem to form first near the free edges of tensile test specimens. 

One important phenomenon associated to matrix cracking is that the crack initiation strain 

depends on ply thickness (Parvizi et a!. (1978), Flaggs and Kural ( 1982)). This phenomenon 

is known as constrained cracking. Flaggs (1985) found that the crack initiation strain for 

[02/90]. graphite/epoxy laminate was 2.48 times that would have been expected from a 

unidirectional transverse tensile test. This led the researchers to conclude that the laminate 

strength is not a lamina property, and that the matrix cracking is governed by fracture 

mechanics criteria. Flaggs and Kural (1982) used the term in situ transverse lamina strength 

for the phenomenon. 

In figure 2 the in situ transverse lamina strengths of graphite/epoxy (T300/934) laminates are 

presented (Flaggs and Kural (1982)). The effect of residual stresses is found by using the 

laminate theory with the temperature difference tJ. T= -130oC. Here, we see that the transverse 

lamina strength is predominantly influenced by the thickness of the transverse ply group and 

by the orientation of adjacent lamina. Furthermore, transverse lamina strength of the 

measured laminates approached asymptotically the strength of an unidirectional laminate as 

the thickness of the 90° -ply group is increased. 

The constrained cracking behaviour have often been explained by fracture mechanics. Dvorak 

and Laws (1987) described flaw growth mechanisms in composite laminates. They assumed 
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that cracks initiate from a nucleus created by localized fiber debonding and matrix cracking. 

These crack nucleuses may propagate on two planes which are parallel to the fiber axis and 

to the midplane of the ply. In thin plies the crack propagates primarily in the fiber direction, 

while in thick plies crack nucleus first grows in direction perpendicular to fibers until crack 

tips reach the adjacent plies, and then propagates in the fiber direction. It follows that the 

crack length may be regarded as relative to the thickness of the plies, and, therefore, a 

laminate with a thin off-axis ply group is stronger. 

c 
·~ 

~0.7 
:;;: 

" ~ 
" 3l 0.6 

I 
"' ~ 0.5 

0.4 

0·31....._ __ 2.._ __ ..._3 __ __._4 __ __._5 __ ___.1,6 __ __,7 __ __,8 

number of 90-degree plies,n 

Figure 2. Transverse cracking strain as a function of the thickness of the transverse ply-group. 

and the orientation of adjacent ±e laminae from Flaggs and Kural (1982). o shows results for 

[0;/90n]s -laminate, x shows results for [±30/90n]s -laminate, * shows results for [±60/90n]s 

-laminate and + the failure strain value for [90] 16 -laminate. 

FAILURE CRITERIA FOR MATRIX CRACKING 

The failure criteria for the matrix cracking can be characterized by how the crack growth 

criterion is formulated. The two major ways to predict matrix cracking are the methods based 

on the voluminal strength and the approaches based on the fracture mechanics. Further, these 

approaches can be distinguished by the degree of the stress approximation, i.e. 1-d, 2-d, FEM 

etc. In the following, we shall use this characterization as a guideline. 
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Failure criteria based on linear fracture mechanics 

In the approaches based on fracture mechanics it is postulated that the failure will occur when 

it is mechanically possible (stress is the same as the failure stress) and energetically favorable 

(in the cracking process "supply of energy"> "consumption of energy"). These models are 

usually studying the self-similar 'growth' of a transverse crack. As discussed earlier, it seems 

that the transverse cracks coalesce from many material flaws. However, in the failure criteria 

developed it is assumed that the size of the initial flaw can be regarded as an effective materia l 

property and the composite as a homogeneous continuum. 

Shear lag models 

In their landmark paper Aveston eta!. (1971) used the shear lag method to study the failure 

process of fibrous composites, where the failure strain of the (brittle) matrix is lower than that 

of the fibers (e.g., steel, glass, and asbestos in cement and carbon fibres in glass). They 

examined the cracking of the matrix phase between stiff fibers. In the work they assumed that 

as the fibers remain intact and the matrix cracks span the entire cross-section, the fibers 

debond completely between adjacent cracks (fig. 3). Now, the main idea is that the increased 

load in the stronger phase due to matrix cracking is transferred back to the weaker phase by 

a constant shear stress. This implies that there exists a characteristic length x', which shows 

the point where the normal stress is fully recovered. The constant shear stress is due to 

frictional sliding and yielding at the fiber/matrix interface. From the load equilibrium (fig. 3) 

we can conclude that the total shear force P m at the interface between fiber and matrix is 

L P, = (J '""A'" = 2:rcn:x' N . (1) 

Hence, 

1 (J muAm x =--- (2) 
2:rcrNr, 

where amu is matrix cracking stress, ~ is the area of the cross-section of the matrix, r is the 

radius of the fiber, and N is the number of fibers. When a value for -c has been determined, 

the shear lag distance x' can be defined from (2) . 
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b) 

a) 

Figure 3. a) Cracked composite cross-section and b) element of load equilibrium. 

Aveston et. al. assessed the conditions for multiple matrix cracking to be as follows: 

1. Stress in matrix is equal to or greater than the matrix failure stress, and 

2. The "consumption" of energy is equal to or less than "supply" of energy 

between the uncracked state and the state where a single crack appears in the 

matrix running completely across the specimen. 

Hence, 

2y Ill VIII + 'Y db + U, + !J.UI ~ !J.W + /J.U/11 ' (3) 

where y m is the surface energy per unit area of the crack surface, V m is the matrix volume 

fraction, y ct> is the energy of fiber/matrix interfacial debonding per cross-section of composite, 

U, is the work done by the matrix sliding over a distance 2x' on the fiber surface per unit 

cross-sectional area A, LlUr is the increase of elastic energy of fibers per A, Ll W is the work 

done by external (fixed) load per A, and Ll U m is the reduction of elastic strain energy of 

matrix per A. A veston et al. assumed that the contribution of y db is neglible and derived an 

expression to the strain Em,c for multiple matrix cracking to be 

(4) 

where Er and Em are the Young's modulus of fiber and matrix, respectively. 

As an extension to their work, Aveston and Kelly (1973) considered the case where the 

assumption of complete debonding between the constituents was removed. They defined the 

additional load flo carried by fibers due to cracking to be 
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(5) 

where o1 is the stress in the fiber. They assumed that 

d(l:l.o) = H( _ ) 
dy VI VIII 

(6) 

where His a constant, while v1 and vm are the elastic displacements in they-direction of fiber 

and matrix, respectively (fig. 4) . According to Aveston and Kelly the differential equation for 

load transfer is 

(7) 

where 

(8) 

and where Ec is the Young's modulus of the composite. The general solution for (7) is 

(9) 

where 

l:l.o 0 = l:l.o (1 0) 

Figure 4. Composite sylinder of fiber and matrix. 
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The key point is now to define the unknown constant H. To solve H, Aveston and Kelly 

assumed unrealistically that oY is constant, which violates previous assumption that it depends 

on y (Talreja (1993)). However, they came to an expression for the constant H. 

Later, Garret and Bailey (1977) applied the results of Aveston and Kelly to the transverse 

cracking phenomenon. They concluded that the analysis for the cracking of the matrix phase 

between stiff fibers could be also used for cross-ply laminates, where a transverse-ply with 

relatively low stiffness in the loading direction is sandwiched between two 0°-plies. Garrett 

and Bailey derived the expression for the transverse-crack spacing versus the applied tensile 

load, but as they applied the results obtained by Aveston and Kelly, they also made the same 

mistakes. 

In their paper Parvizi, Garrett, and Bailey (1978) used the same analysis to study the 

constrained cracking behaviour and derived an expression for the transverse failure strain to 

be 

where 

.,cr _ 
<'2 -

bEPc.fi 

(b+d)E2Ec (11) 

(12) 

and where E1 is the longitudinal Young's modulus,~ the transverse Young's modulus, G23 

the transverse shear modulus of a lamina, Ec the effective modulus of the laminate, and Gc the 

critical strain energy release rate of the composite. In addition, the thicknesses of the oo- and 

90°-plies are band 2d, respectively (fig. 5). From equations (11) and (12) we see that the 

transverse cracking strain decreases as the thickness of the 90°-ply group is increased and the 

others are kept constant. This is a correct trend. In their paper Parvizi et al. compared 

experimental data for glass/epoxy cross-ply laminates and the results obtained by expression 

(11), and it seems that the theoretical values agree quite well with the experiments when the 

ratio 2dlb is lower than 1. 
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Figure 5. A laminate with a microcrack. 

The value of transverse cracking strain is also affected by thermal strains induced in the 

curing process. Bailey, Curtis, and Parvizi (1979) determined the thermal strains by an 

elementary one-dimensional thermal analysis and summed them up to the equation (11) in 

order to have a more realistic value for the transverse cracking strain. They also studied the 

longitudinal splitting of the 0°-plies, which were observed in the experiments of tensile loaded 

glass/epoxy cross-ply laminates, and compared the results of their crack constraint theory 

with the experiments made for [0/90/0]- and [90/0/90]-laminates, which were both glass and 

carbon reinforced. The results obtained by their theory for carbon/epoxy laminates do not 

correspond very well with the tests. However, the paper of Bailey et al. is a good summation 

of the theoretical and experimental results and observations of the matrix cracking phenome­

non obtained by Bailey and his co-workers. 

The shear lag approach can be modified by removing the assumption that the whole 90°-ply 

group is the shear transfer region as discussed previously. This is done by assuming that there 

exists a thin interlaminar shear layer between the cracked and constraining ply group which 

transfers the load. Lim and Hong (1989) applied the modified shear lag approach to cross-ply 

laminates, and they incorporate the effect of the interlaminar shear layer, thermal strains, and 

Poisson's effect to the matrix cracking problem. They used the Griffith energy balance 

criterion similar to that described before (eq. (3)) in order to predict the onset of transverse 

cracking. However, in this type of analysis some value for the thickness (do} and the shear 

modulus (Gi) of the shear layer must be assumed. 

All the analyses so far have dealt with cross-ply laminates. Flaggs and Kural (1982) showed 

that the transverse cracking failure strain determined by eq. (11) for [±30/90"],- and 

[±60/90n],-laminates did not agree well with the experiments. In his article Flaggs (1985) 

studied the tensile matrix failure in the 90°-ply of [±8/90n],-laminate and mixed mode failure 
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in 8°-ply of [0/8].-laminates by an approximate two-dimensional shear-lag model with the 

fracture mechanics criteria. He used the shear lag approach to analyse the load transfer 

mechanism for inplane shear and normal stress between cracked inner ply-group and outer 

ply-group (fig. 6). The governing equations are equivalent to expression (7) with the 

exception that the contribution of the inplane shear stress is added to the expression, which 

makes the analysis two dimensional. 

2 

I 
Figure 6. Laminate geometry for 2-d shear-lag model. 

Load redistribution is now governed by equation 

(13) 

where I, are constants, while t>n 1 and t>n 6 are additional load increments (stress resultants 

of the lamina) of the normal and shear stress, respectively. The unknown constants Lij are 

obtained from the equilibrium of the interlaminar shear components in consistence with the 

assumption that each ply-group behaves like a separate Mindlin plate. The transverse cracking 

criterion is similar to used by Aveston et al., namely (in sligthly different form than eq. (3)) 

(14) 

where a0 is the change in crack length between the initial crack-free state and the current 
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state, and Gc is the critical strain energy release rate in the transverse direction of the 

unidirectional lamina. In the previously mentioned shear-lag analyses (Garrett and Bailey 

(1977)) and related papers (Lim and Hong (1989)), it was assumed that 2a0 = 2d, which is 

the thickness of the whole transverse ply-group. Flaggs assumed (motivated by the work of 

A.S.D Wang and his co-workers, which will be discussed later) that 

{
d if d 5. a, 

ao = 
a, if a,> d 

(IS) 

where a
0 

is the critical flaw size. He assumed that a cis 2.5 times the thickness of a single ply. 

This model gives quite good results compared with experimental data for [0/900 ] 5, 

[±30/90J,- and [±60/90J ,-laminates. The 2-d shear-lag model agrees also with the measured 

results better than the shear-lag model applied by Bailey et a!. (1979) with the assumption 2a0 

= 2d. However, the choice the value for a0 , as it will be discussed later, affects the difference 

between the data and the theoretical results. 

Flaggs considered also the mixed mode matrix cracking of [O:J70],- and [OJ80] ,-laminates, 

where the inplane shear stress contributes the failure. In the mixed mode fracture G, is not 

necessarily a constant, and, therefore, it is a function of all the crack loading modes present, 

namely 

(16) 

By assuming some values for the ratios GnfG1 and Gm/G1, he used the model to predict the 

in situ strengths of the laminates, which he showed to be in good agreement with the 

experimental data. 

There are numerous studies of the transverse cracking problem analysed by the shear lag 

approach. They all study the same differential equation (7), and the main difference of the 

studies is in the determination of the shear lag parameter <j>. For example, Tan and Nuismer 

(1989) solved the matrix cracking problem using an approximate two-dimensional elasticity 

solution and fracture mechanics with the assumption 2a0=2d. However, they attained the 

same differential equation (eqn (7)) as was earlier obtained in the shear lag approaches. The 

treatment of the problem is quite similar to Flaggs (1985). The main difference between these 

two studies is that when Tan and Nuismer assumed a linear variation of the transverse shear 
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stresses through the thickness of the laminate, Flaggs assumed these stresses to be constant 

over the ply-group and multiplied the stress field by a shear correction factor. 

Strain energy release rate curve by FEM 

A significant amount of work in the field of matrix-dominated cracks has been done by Wang 

and his co-workers (e.g., Wang and Crossman (1980), Crossman et al. (1980), Wang (1984), 

Wang (1986)). They have used classical fracture mechanics in conjunction with the finite 

element method in order to study matrix-dominated sublaminate cracks (matrix cracks, edge 

and interior delamination, longitudinal splitting). In this chapter their contribution to the 

transverse cracking is considered. 

In all of the above mentioned methods authors have remained within the framework of ply­

elasticity, where the properties of individual laminae are assumed to be homogeneous, and 

effective anisotropic material properties are used to describe the behaviour of a lamina. On 

this macromechanics level the true identities of the microdefects are lost. However, when we 

are using the classical fracture mechanics, some quantity for initial crack size must be 

determined. Wang (1984) used the 'effective flaw' concept where the contribution of the 

microstructural material flaws is retained by the quantity 2ao, which is an effective material 

property (fig. 5). The same concept is tacitly used in other studies involving the use of 

fracture mechanics theory. 

In their articles Wang and Crossman (1980) and Crossman et al. (1980) used the 2-d 

generalized plane strain finite elements in order to study the propagation of a Griffith crack 

in the 90° -ply group of graphite/epoxy [±25/90.].-laminates. The energy balance criterion is 

~ (W - U) =lim t.U = G
1 

(a) 
da a-->0 t.a 

(17) 

where the strain energy release rate Gc(a) associated with half crack length is determined by 

crack-closure procedure. The strain energy release rates due to mechanical and thermal loads 

can be expressed in the general form as 
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(18) 

and 

(19) 

where Eo is the far-field tensile strain, and t is a characteristic length. The shape functions C, 

and C,. are associated with mechanical and thermal loads, respectively, and they are 

independent of the applied loads and depend only on the lamination configuration and the 

crack size. The total strain energy release rate Gr is expressed as (Wang (1984)) 

(20) 

In the figure 7 there is shown a typical shape of functions C, and C,.. The functions can be 

calculated by the finite element method keeping the far-field tensile strain constant for 

different crack sizes. There are also exact solutions for G (Isida (1973)) and for K1 (Hilton 

and Sih (1971)) that give very similar results for the problem. 

From the figure 7 we see that the value of C first increases as the crack grows, but when the 

crack tip is approaching the interface of the plies, it begins to decrease. This means that when 

the critical strain energy release rate is reached the crack will grow in unstable manner until 

the value of the arrest toughness G. or the boundary of the constraining layer is reached. 

G 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a/d 

Figw-e 7. A typical shape of functions C, and C,.. 
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Now, the criteria for the onset of a transverse crack is 

G1 (a 0 ) = Gc ifd>a0 

G1rrwr. (a) = Gc if d :5 a0 

(21) 

that is, if the thickness of the 90°-ply group is less than the effective crack size, the maximum 

value of the G curve is used (fig. 7). The condition (21) sets a maximum to the size of the 

effective flaw and, hence, a lower bound to the tensile strength of a laminate. This is not the 

case in the approaches that study the growth of a transverse crack spanning the entire 

thickness of the 90° -ply group (i.e., 2a=2d), which is the reason why, for example, the model 

created by Bailey et a1 (1979) gives too low values for the onset of transverse cracking when 

d is large. Furthermore, when we are studying the growth of cracks spanning the entire 

thickness of the 90°-ply group by the Griffith criterion, the rate of strain energy release rate 

should be positive. However, the G-curve in figure 7 do not support this assumption. These 

considerations were given by Flaggs and Kural (1982) . It should also be pointed out that the 

strain energy release rate curves are usually determined up to 0. 9 for the ratio a/d. This is 

because of the difficulties occuring when two singularities, namely, the crack tip and the ply 

interface, are close to each other. 

To obtain the solution for the problem, we must determine values for the critical strain energy 

release rate Gc and for the effective flaw size 1\J· This is often the most difficult part of the 

analysis. Most of the studies of transverse ply failure are adressed to analyse the self-similar 

growth of a mode I crack. However, in composites the value of G1c for crack propagation in 

the direction of the fiber axis (L) is lower than in the direction perpendicular to the fiber axis 

(T). Wang (1984) referred to an experiment where the ratio G1cL/G1cT for a graphite/epoxy 

system detected by the splitting cantilever beam method was about 0.6-0.8. This 

demonstrates the directional dependence of Gc. In spite of this, only one value for Gc is used 

in the analyses. 

As discussed before, in thin laminates there is no visible initial flaw size a0 to be considered 

as a material parameter. This means that we must determine ao from the experiments in 

conjunction with proper analysis. One way to do this is to measure the tensile transverse 
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strength 0 2 u of an unidirectional laminate and calculate the effective flaw size from the 

Griffith's formula 

(22) 

However, it must be remembered that failure in unidirectional laminates is likely to initiate 

from the surface and, for example, in the case of [±25/900 ].-laminates we are studying an 

internal crack, i.e., a different problem. Bailey et al. (1979) found this to be an explanation 

why the strength of unidirectional laminates in tests was lower than that measured for thick 

cross-ply laminates. 

The equation (22) gives a constant value for the initial crack size, which is also greater than 

the thickness of a single layer. That is why, in the [0/90/0]-laminate the initial flaw would be 

too large compared to the thickness of the 90°-ply. 

Rothschilds et al. (1988) studied the effect of hygrothermal histories on the onset of ma:trix 

cracking. They compared the 2-d shear lag method by Flaggs (1985) and the method 

proposed by Wang (1984) for graphite/epoxy [(±45/90/0)J900 ].-, [±45/90/0/9Q,l -, and 

[±0/90J,-laminates in dry conditions. Because of the inaccuracies of the results given by the 

2-d shear lag model, they used the finite element method (Wang (1984)) to study the 

hygrothermal effects. llcewicz et a!. (1991) also used the strain energy release method by 

FEM to analyse the matrix cracking in laminates with resin-rich interlaminar layers. 

Variational analysis 

Hashin (1985) analysed cracked cross-ply laminates by a variational approach. In this 

approach the region under consideration is a plane stress element of a laminate so that the x­

direction of the RVE (representative volume element) is bound between two adjacent cracks 

spanning through the entire thickness of the 90°-plies and the thickness direction is bound 

between the top and bottom surface of the laminate (fig. 5). The stress tensor can be divided 

into two parts: the initial stress tensor of the undamaged state and the stress perturbation 

tensor caused by cracking. It is assumed that the stress perturbation in the x-direction is 
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constant through the thickness of the plies, namely a}0 = a. <o (x) and a. (2) = a. <2) (x). This 

assumption was justified by the fact that the outer plies give a constraint to the crack opening 

displacement (COD) so that the crack tip stresses are finite. 

The problem is formulated as a two dimensional boundary value problem, which is then 

solved using variational methods so that a statically admissible stress field is constructed and 

the constants involved are determined analytically by the principle of minimum 

complementary energy. 

In his paper Hashin (1985) studied the stiffness reduction of a cracked laminate and the stress 

field between two adjacent cracks. Nairn (1989) extended his analysis to include thermal 

strains and gave a solution for the strain energy release rate. Varna (1991) extended Hashin's 

work by considering a nonuniform longitudinal stress in the oo -layers. 

The results obtained by 2-d variational analysis for the transverse cracking strain are in better 

agreement (Nairn (1989), Varna (1991)) with the experimental data than those predicted by 

the shear lag approach. The obvious reason for this is that the stress state in the cracked 

laminate determined by this 2-d approach is in better agreement with the reality than that 

obtained by shear lag analysis. However, the fracture mechanics criteria are evidently the 

same as in the classical work of Bailey eta!. (1979), and this gives too low values for the 

onset of transverse cracking when the thickness of the 90°-ply group is high, as described 

previously. Varna and Berglund (1993) extended further their model to include nonuniform 

stress distnbution in the thickness direction and the effective flaw size as a parameter in their 

model This model contains several constants, which depend on each other, and which have 

to be found by numerical considerations. 

Strain energy release rate curve by analytical methods 

Dvorak and Laws (1987) derived the expressions for the onset of transverse cracking using 

the analytical strain energy release rate equation for a crack in an orthotropic medium. They 

considered the cases of thick and thin 90°-ply groups separately. Dvorak and Laws postulated 

that a microcrack will start to propagate as a Griffith crack when the microcrack becomes a 

crack nucleus of certain critical width 2a. 
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In the case of a thick ply they derived expressions for the onset of matrix cracking directly 

from the strain energy release rate expression for a crack in an orthotropic medium similar 

to that given by Griffith in the isotropic case. They arrived at the relationship GT/GL = 2 (the 

microcrack may grow in the longitudinal (L) or transverse (T) direction of the fiber axis) and 

concluded that the onset of failure of a thick 90° -ply group is determined by type T cracking 

because the experimental studies indicate that the ratio GeL/GeT> 0.5. 

When the 90°-ply group is relatively thin, the presence of the adjacent layers is affecting the 

stress state at the tip of the crack nucleus. For this case, Dvorak and Laws introduced the 

shape functions ~i• which are functions of the ratio a/d for the different cracking modes. The 

idea is similar to that used by Wang, as discussed above. Now, the strain energy release rate 

equation for type L crack is 

(23) 

where 

(24) 

However, in the lack of the knowledge of ~i Dvorak and Laws considered the case of thin 

90°-ply group and assumed that 2a=2d, ~1 = ~ = 1, and that the contribution of mode III 

cracking is neglible, which means that the third term in the parenthesis of equation (23) 

vanishes. With these assumptions they arrived at a very simplified expression for the onset 

of transverse failure of thin 90°-ply group. The transition from thin to thick plies is then 

defined by the intersection of the curves determined by the expression (23) and the strain cut­

off value for thick plies. 

Dvorak and Laws also considered the transverse strength of a unidirectional laminate and 

postulated that the critical crack nucleus is most likely to be at the surface of the laminate. 

In this case the estimate for the ratio (o2
90)j(o2")a= (1.12/2). 
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Failure criteria based on strength of materials 

In the strength based approaches the constraint effect is explained by an assumption that the 

failure probability is related to the volume of the stressed material. 

Shear lag models 

Fukunaga et al (1984) studied the failure of graphite/epoxy cross-ply laminates by the means 

of the statistical strength analysis with shear lag model assuming the existence of the 

interlaminar shear layer and taking the thermal residual stresses and Poisson effect into 

consideration. They used the Weibull strength theory 

0 2 Vo 1 ( )1/m 
a~ = viol 

(25) 

where o2° is the 90°-ply strength predicted for material volume V0, o/ is the 90°-ply strength 

for material volume V1, m is a material constant, anCjl o reflects the effect of stress 

nonuniformity on the 90°-ply strength. When the onset of transverse cracking is considered, 

0 1 = 1, which means that the shear lag approach is not used to determine the first cracking 

event of the 90°-ply. 

Taking into account residual thermal stresses and Poisson effect, the equation for the 

transverse cracking strain is 

(26) 

where Qij and Ag are the reduced and in-plane stiffnesses of the laminate, respectively, and 

o}2
>T is the thermal residual stress in the 90°-ply. In the determination of the ultimate failure 

of the laminate they showed that by choosing the ratio G;/do (2d is the thickness of the 90°­

ply) and assuming proper values for o2° and m, a curve that fits the experiments can be 

determined. 
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DISCUSSION 

The criteria for the onset of the matrix cracking have been introduced so far only for very 

simple laminates and loading conditions. The theories are usually formulated to predict the 

transverse strength of a 90°-ply group of a thin cross-ply or [±8/900].-laminates. This is in 

sharp contrast to reality where substantially large composite parts with complicated lay-up 

patterns are used as shell structures to utilize the most of the features of the composites. 

Further, it should be also noted that the laminates with thick 90°-ply groups are rare in 

applications, and in the case of cross-ply laminates the stacking sequences like 

[0/90/0/90/0/90 ... ] are common practice. 

We feel that the concepts of the linear fracture mechanics have been applied somewhat 

inadequately to the theories presented here. Most of the strength predictions use the energy 

balance criterion (eq. 3) as presented by Aveston and Kelly. Further, by setting the size of the 

initial flaw to be the same as the thickness times the width of the transverse ply, the criterion 

for the onset of the transverse crack propagation is determined by the growth of a full 

transverse crack that already exist. To overcome this dilemma some authors (Dvorak & 

Laws, Lim & Hong, Varna & Berglund) have postulated that in thin 90° -ply the crack grows 

in the width direction, i.e. the size of the initial flaw is d times some length in the width 

direction. The idea is that the size of the initial flaw in the width direction does not have any 

effect on the stress intensity of the crack tip and consequently to the onset of crack propaga­

tion. This seems physically questionable for small crack lengths (in transverse direction) 

although the cracks tend to grow along the fiber direction (Sierakowski and Chaturvedi 

1986). Further, we feel that the concept of macroscopic initial flaw is somewhat questionable, 

because they are not detected in actual laminates and the use of this parameter only shows 

the lack of rigorous micro mechanical models. In addition, many researchers have used the 

Weibull theory to explain the variation of the strength as a function of volume. However, 

both the Weibull theory and the initial flaw size should be verified with unidirectional 

laminates, where the volume effect exists, but where the constraint effect is absent. 

Some authors claim that the application of LEFM to the matrix cracking problem eliminates 

the use of adjustable parameters like those used in the strength based theories. Generally, this 

is not true. The large discrepancy in the measured values for Gc, the concept of initial 
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macroscopic flaw size ao. value of residual stresses (indicated by the value of stress free 

temperature !l. T), and the introduction of non-measurable material constants leaves, in fact, 

many parameters left to be speculated. There seems to be a tendency to fit the obtained 

criteria by choosing some of these parameters so that the theory under consideration gives 

best correlation to the measured data. Therefore, we have compared some of the methods 

presented here for the cross-ply laminates. The criteria are divided in two groups. In the first 

group there are the criteria, where the size of the initial flaw is the same as the thickness of 

the transverse ply, and in the second group there are the criteria, where a0 is a parameter. 

These groups are presented in table 1, and the material parameters are shown in table 2. The 

results for the transverse cracking strain are presented in figures 8-9, where also the measured 

values are plotted. The results for the 2-d shear-lag and 2-d elasticity are taken from the 

references. All the other results are calculated by the authors. The finite element resu lts are 

obtained by the ABAQUS-program using parabolic generalized plain strain elements with 

crack tip singularity. 

Table 1. The criterion under consideration. 

Group l. Group 2. 

Method Legend Ref. Method Legend 

shear-lag + Bailey et al. 1979 2-d shear-lag + 
shear-lag Lim & Hong 1989 FEM * 
2-d elasticity X Tan & Nuismer 1989 experimental data --

analytical energy Dvorak & Laws 1987 1 

release rate 

variational 0 Nairn 1989 

variational -- Varna 1991 

experimental data * Flaggs & Kural1982 

1) the results are obtamed from expressiOn of thin phes w1thout stram cut-off 

The general form of the energy release rate equation in group 1 is 

G1 = (E'{) 2E1d~f(C9.,d0 ,b,d) 

Ref. 

Flaggs 1985 

Wang 1984 

Flaggs & Kural 

1982 

(27) 

where Cu and q, are material parameters. The difference between the methods under 

consideration is in the form of the function f. Because the shape of G is determined by the 
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strain, the value of Jf and the choice of Gc shifts the position of the criteria relative to the 

experimental data. We like to emphasize that the comparison is not mentioned to be 

quantitative. By choosing the values of Gc and 11o otherwise, any method can be shifted closer 

to the experimental data. 

Table 2. Material properties for T300/934. 

Parameter Value Parameter Value 

Et 138 GPa at o.o9 J..lrc 

~ 11.7 GPa az 28.8 J..lrc 

Gtz 4.56 GPa ~T -147 oc 

G21 4.18 GPa a. 228J/m2 

Utz 0.29 b 0.264mm 

0 21 0.40 d n * 0.132 mm (n=1,2,4,8) 

a, d (n=1,2), 0.33 mm (n=4,8) G/dn 9.7E+13 Pa/m 

1.3..----.----.----.---.---.----.---, 

Q) 

~0.7 
c: 
~0.6 

0.5 

0.4 

2 3 4 5 6 
number of 90~egree plies , n 

Figure 8. Transverse cracking strain of a [OJ90nls T300/934 graphite/epoxy laminate family 

by several criteria as 11o = d. 
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Figure 9. Transverse cracking strain of a [OJ90nls T300/934 graphite/epoxy laminate family 

by several criteria as ao (n=1,2) = d, a0 (n=4) = 0.625 d and a0 (n=8) = 0.3125 d. 

CONCLUSIONS 

The problem of matrix failure concerning matrix cracking and delamination has been 

examined. A critical survey shows that the criteria reviewed are applicable only to very 

limited types of specimen geometry, material configurations, environmental conditions, and 

loading types. Also, the so-called in situ strength problem is still lacking physical explanation. 

The authors feel that the thorough understanding of the curing process and the 

micromechanical behaviour of the composites would be valuable in the analysis of matrix 

failures. Also, the theory of the fracture mechanic may need modifications when applied to 

the composites. 
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