OHUTLEVYRAKENNETERÄKSEN S350GD+Z JA RAKENNE-TERÄKSEN S355 PALOTEKNISET MATERIAALIMALLIT

Jyri Outinen Jyrki Kesti Pentti Mäkeläinen Rakenteiden Mekaniikka, Vol. 28 No.4, 1995, s. 3-28

TIIVISTELMÄ

Tässä artikkelissa on esitetty palotekniset materiaalimallit ohutlevyrakenneteräkselle S350GD+Z ja rakenneteräkselle S355. Artikkelissa on esitetty kaksi erilaista mallinnusta molemmille rakenneteräksille. Mallinnus on tehty materiaalien transienttikokeiden koetulosten perusteella /3//4/ ja ne pohjautuvat mitoitusohjeen Eurocode 3: Part 1.2:n materiaalimalliin /1/ sekä W.Rambergin ja W.R.Osgoodin kehittämään materiaalimalliin /5/.

EUROCODE 3: PART 1.2:N MATERIAALIMALLI

Eurooppalaisessa teräsrakenteiden palomitoitusohjeessa Eurocode 3: Part 1.2 /1/ on esitetty rakenneterästen jännitys-venymäarvojen laskemiseen korkeissa lämpötiloissa laskennallinen malli. Tässä mitoitusohjeessa esitettyä materiaalimallia voidaan käyttää sellaisenaan normin EN 10025 /6/ mukaisille rakenneteräksille S235, S275 ja S355, sekä normien EN 10113, EN 10155, EN10210-1 ja 10219-1 mukaisille rakenneteräksille. Lisäksi EC3: Part 1.2:ssa on mainittu, että materiaalimallia voidaan

käyttää kaikille rakenneteräksille, joiden materiaaliominaisuudet ovat tiedossa. Ohutlevyrakenneteräs S350GD+Z on määritelty normissa EN 10147 /7/.

Jännitys-venymäkäyrä on jaettu Eurocode 3:n mallissa venymäalueen mukaan neljään osaan. Kuvassa 1 on havainnollistettu jännitys-venymäkäyrän muodostumista mallin mukaan.

Kuva 1. Rakenneteräksen jännitys-venymäkäyrä korkeissa lämpötiloissa EC3: Part 1.2 :n mukaan.

Seuraavalla sivulla on taulukossa 1 esitetty mitoitusohjeessa /1/ annetut kaavat jännitys-venymäarvojen laskemiseen.

Venymäalue	Jännitys σ	Kimmokerroin E		
$\epsilon \leq \epsilon_{p,\theta}$	ε·E _{a,θ}	E _{s,0}		
$\epsilon_{p,\theta} < \epsilon < \epsilon_{y,\theta}$	$f_{p,\theta}$ - c + (b/a)· $[a^2 - (\varepsilon_{y,\theta} - \varepsilon)^2]^{0.5}$	$\frac{b(\varepsilon_{y,\theta} - \varepsilon)}{a[a^2 - (\varepsilon_{y,\theta} - \varepsilon)^2]^{0.5}}$		
$\varepsilon_{y,\theta} \leq \varepsilon \leq \varepsilon_{1,\theta}$	f _{y,0}	0		
$\varepsilon_{t,\theta} < \varepsilon < \varepsilon_{u,\theta}$	$f_{y,\theta}$ [1- (ϵ - $\epsilon_{t,\theta}$)/ ($\epsilon_{u,\theta}$ - $\epsilon_{t,\theta}$)]	-		
$\varepsilon = \varepsilon_{u,\theta}$	0.00	-		
Parametrit	$\varepsilon_{p,\theta} = f_{p,\theta} / E_{a,\theta}$ $\varepsilon_{y,\theta} = 0.02$	$\varepsilon_{i,\theta} = 0.15$ $\varepsilon_{u,\theta} = 0.20$		
Funktiot	$a^{2} = (\varepsilon_{y,\theta} - \varepsilon_{p,\theta}) \cdot (\varepsilon_{y,\theta} - \varepsilon_{p,\theta} + c/ E_{a,\theta})$ $b^{2} = c \cdot (\varepsilon_{y,\theta} - \varepsilon_{p,\theta}) \cdot E_{a,\theta} + c^{2}$			
	$c = \frac{(f_{y,\theta} - f_{p,\theta})^2}{(\varepsilon_{y,\theta} - \varepsilon_{p,\theta}) \cdot E_{a,\theta} - 2(f_{y,\theta} - f_{p,\theta})}$	θ)		

Taulukko 1. Eurocode 3: Part 1.2 : Jännitys-venymäarvojen laskentakaavat rakenneteräksille korkeissa lämpötiloissa.

5

Taulukossa 2 on esitetty Eurocode 3: Part 1.2 mitoitusohjeessa esitetyt vähennyskertoimet rakenneteräksen suhteellisuus- ja myötörajalle ja kimmokertoimelle sekä noin 0.5% kokonaisvenymään perustuvan myötörajan vähennyskertoimelle $k_{x,\theta}$.

Taulukko 2. Vähennyskertoimet jännitys - venymäyhteyden määrittämiseksi EC 3: Part 1.2:n mukaan.

Lämpötiļa	Myötörajan	Myötörajan	Suhteellisuusrajan	Kimmokertoimen
	vähennyskerroin	modifioitu	vähennyskerroin	vähennyskerroin
		vähennyskerroin		
Ta	$k_{y,\theta} = f_{y,\theta} / f_y$	$k_{x,\theta} = f_{x,\theta} / f_y$	$k_{p,\theta} = f_{p,\theta} / f_y$	$k_{E,,\theta} = E_{a,\theta} / E_a$
20 °C	1,000	1,000	1,000	1,000
100 °C	1,000	1,000	1,000	1,000
200 °C	1,000	0,922	0,807	0,900
300 °C	1,000	0,845	0,613	0,800
400 °C	1,000	0,770	0,420	0,700
500 °C	0,780	0,615	0,360	0,600
600 °C	0,470	0,354	0,180	0,310
700°C	0,230	0,167	0,075	0,130

OHUTLEVYRAKENNETERÄKSEN S350GD+Z TRANSIENTTIKOKEIDEN KOETULOKSIIN POHJAUTUVA, EUROCODE 3:PART 1.2:N MUKAINEN MATERIAALIMALLI

Ohutlevyrakenneteräksen S350GD+Z mekaaniset ominaisuudet palolämpötiloissa

Määritettäessä rakenneterästen jännitys-venymäarvoja EC3: Part 1.2:n mukaan, on teräksen kimmokertoimen E(T), myötörajan f_y (R_{12.0}) ja suhteellisuusrajan f_p arvoina käytetty kaavoissa (1)–(5) esitettyjä transienttikokeiden koetuloksiin perustuvia yhtälöitä.

Kimmokerroin E(T):

$E(T) = -0.69 \cdot T^2 - 35 \cdot T + 207000 ,$	kun $20^{\circ}C \le T \le 400^{\circ}C$	(1)
$\mathbf{E}(\mathbf{T}) = -0.602 \cdot \mathbf{T}^2 + 446.3 \cdot \mathbf{T} + 400 \; ,$	kun 400°C < T≤700°C	(2)

missä

E(T) on kimmokerroin lämpötilassa T (N/mm²) ja

T on teräksen lämpötila (°C).

Suhteellisuusraja f_p:

 $f_p = 8.28 \cdot 10^{-9} \cdot T^4 - 1.229 \cdot 10^{-5} \cdot T^3 + 0.0059 \cdot T^2 - 1.459 \cdot T + 377$, kun $20^{\circ}C \le T \le 700$ (3)

missä

 f_p on suhteellisuusraja (N/mm²) ja

T on teräksen lämpötila (°C).

Myötöraja fy (Rt2.0):

$f_y = f_{y20^\circ C}$, $kun \ 20^\circ C \le T \le 340^\circ C$	(4)
$f = 4.52 \cdot 10^{-6} \cdot T^3 = 0.0067 \cdot T^2 + 2.3404 \cdot T + 151.13$ kup 340°	$C < T < 700^{\circ}C$ (5)

missä

fy	,	on myötöraja (N/mm²),
f _{y20℃}		on nimellinen myötöraja huoneenlämpötilassa (N/mm ²) ja
Т		on teräksen lämpötila (°C).

Kuvassa 2 on esitetty kaavoilla (1)-(5) laskettujen mekaanisten ominaisuuksien vähennyskertoimien lämpötilariippuvuudet verrattuna koetuloksiin ohutlevyrakenneteräkselle S350GD+Z.

Kuva 2. Ohutlevyrakenneteräksen S350GD+Z kimmokertoimen E(T), suhteellisuusrajan f_p ja myötörajan f_y mallinnetut lämpötilariippuvuudet verrattuna koetuloksiin.

Ohutlevyrakenneteräksen S350GD+Z materiaalimalli

Seuraavassa on esitetty ohutlevyrakenneräksen S350GD+Z transienttikokeiden koetuloksista /4/ Eurocode 3:n mukaisesti määritetty materiaalimalli. Mallinnuksessa käytetyt laskentaparametrien arvot on esitetty taulukossa 3.

Taulukko 3. Laskentaparametrien arvot ohutlevyrakenneteräkselle S350GD+Z jännitys-venymäarvojen laskennassa EC3:n mallin mukaisesti.

Т	E	fp	$f_y(\mathbf{R}_{12.0})$	ε _p	ε _y	a ²	b ²	с
°C	N/mm ²	N/mm ²	N/mm ²					
20	206024	350	350	0.0017	0.02	0.00033	0	0
100	196600	279	350	0.0014	0.02	0.00035	5246.94	1.4358
200	172400	236	350	0.0014	0.02	0.00035	14008.0	4.3552
300	134400	206	350	0.0015	0.02	0.00034	23547.3	9.4512
400	82600	163	305	0.002	0.02	0.00033	25196.4	16.7336
500	73050	104	211	0.0014	0.02	0.00035	13692.9	10.0166
600	51460	44	120	0.0009	0.02	0.00037	6877.77	6.9323
700	17830	19	57	0.0011	0.02	0.00036	1893.98	5.5199

Kuvissa 3, 4, 5 ja 6 on esitetty koetulosten vertailu mallinnettuihin jännitysvenymäkäyriin lämpötiloissa 100°C-700°C.

Kuva 3. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S350GD+Z verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötilassa 100°C.

Kuva 4. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S350GD+Z verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötilassa 200°C.

Kuva 5. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S350GD+Z verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötiloissa 300°C ja 400°C.

Kuva 6. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S350GD+Z verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötiloissa 500°C, 600°C ja 700°C.

Kuvista 3-6 nähdään, että Eurocode 3: Part 1.2:n malli soveltuu hyvin myös ohutlevyrakenneteräksen S350GD+Z materiaalimalliksi korkeissa lämpötiloissa, kun kimmokertoimen, suhteellisuusrajan ja myötörajan arvoina käytetään kokeellisesti määritettyihin arvoihin perustuvia malleja.

RAKENNETERÄKSEN S355 TRANSIENTTIKOKEIDEN KOETULOKSIIN POHJAUTUVA, EUROCODE 3: PART 1.2:N MUKAINEN MATERIAALI-MALLI

Rakenneteräksen S355 mekaaniset ominaisuudet palolämpötiloissa

Rakenneteräksen S355 jännitys-venymäarvojen mallinnuksessa on kimmokertoimen E(T), myötörajan f_y (R_{12.0}) ja suhteellisuusrajan f_p arvoina käytetty transienttikokeiden koetuloksiin perustuvilla kaavoilla (6)-(12) laskettuja arvoja.

Kimmokerroin E(T):

 $E(T) = 206000 - 44.44 \cdot (T-20) , \quad kun \ 20^{\circ}C \le T \le 200^{\circ}C$ (6) $E(T) = 263000 - 325 \cdot T , \quad kun \ 400^{\circ}C < T \le 700^{\circ}C$ (7) missä $E(T) \quad on \ kimmokerroin \ lämpötilassa \ T \ (N/mm^2) \ ja$

T on teräksen lämpötila (°C).

Suhteellisuusraja fp:

$f_p = 350 $ N/r	nm ²	,	kun	$20^{\circ}C \le T \le 200^{\circ}C$	(8)
$f_p = 350 - 1$	(T - 200)	3	kun	$200^{\circ}C < T \le 400^{\circ}C$	(9)
$f_p = 150 - 1/2$	3·(0.44·T-400)	,	kun	$400^{\circ}C < T \le 700^{\circ}C$ (10)

missä

fy20°C on myötöraja huoneenlämpötilassa (N/mm²),

f_p on suhteellisuusraja (N/mm²) ja

T on teräksen lämpötila (°C).

```
Myötöraja fy (R12.0):
```

```
 \begin{array}{ll} f_y = f_{y20^\circ C} &, & kun \ 20^\circ C \leq T \leq 420^\circ C & (11) \\ f_y = 1.127 \cdot 10^{-5} \cdot T^3 - 0.01942 \cdot T^2 + 10 \cdot T - 1254.3 &, & kun \ 420^\circ C \leq T \leq 700^\circ C & (12) \\ jossa \\ f_y & on \ myötöraja \ (N/mm^2), \\ f_{y20^\circ C} & on \ myötöraja \ huoneenlämpötilassa \ (N/mm^2) \ ja \\ T & on \ teräksen \ lämpötila \ (^\circ C). \end{array}
```

Kuvassa 7 on esitetty kaavoilla (6)-(12) laskettujen mekaanisten ominaisuuksien vähennyskertoimien lämpötilariippuvuudet verrattuna koetuloksiin rakenneteräkselle \$355.

Kuva 7. Rakenneteräksen S355 kimmokertoimen E(T), suhteellisuusrajan f_p ja myötörajan f_y mallinnetut lämpötilariippuvuudet verrattuna transienttikokeiden koetuloksiin.

Rakenneteräksen S355 materiaalimalli

Seuraavassa on esitetty rakenneräksen S355 transienttikokeiden koetuloksista /3/ Eurocode 3:n mukaisesti määritetty materiaalimalli. Mallinnuksessa käytetyt laskentaparametrien arvot on esitetty taulukossa 4.

Taulukko 4. Laskentaparametrien arvot rakenneteräkselle S355 jännitysvenymäarvojen laskennassa EC3:n mallin mukaisesti.

Т	E	fp	$\mathbf{f}_{y}(\mathbf{R}_{12.0})$	ε _p	ε _y	a ²	b ²	с
°C	N/mm ²	N/mm ²	N/mm ²					
20	206000	350	355	0.00170	0.02	0.000335	25.06653	0.006649
100	202444	350	355	0.00173	0.02	0.000334	25.06782	0.006777
200	198000	350	355	0.00177	0.02	0.000332	25.06949	1).006944
300	165500	250	355	0.00151	0.02	0.000342	11852.33	3.868421
400	133000	150	355	0.00113	0.02	0.000359	50630.36	20.0119
500	100500	117	299	0.00116	0.02	0.000359	41478.96	21.6638
600	68000	83	189	0.00122	0.02	0.000356	13583.96	10.5502
700	35500	50	96	0.00141	0.02	0.000348	2472.611	3.72535

Kuvissa 8, 9, 10 ja 11 on esitetty koetulosten vertailu mallinnettuihin jännitysvenymäkäyriin lämpötiloissa 100°C-700°C.

Kuva 8. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S355 verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötilassa 100°C.

Kuva 9. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S355 verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötilassa 200°C.

Kuva 10. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S355 verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötiloissa 300°C ja 400°C.

Kuva 11. EC 3: Part 1.2:n mukaan mallinnetut jännitys-venymäkäyrät teräkselle S355 verrattuna transienttikokeiden koetuloksista muodostettuihin käyriin lämpötiloissa 500°C, 600°C ja 700°C.

TRANSIENTTIKOKEIDEN TULOKSIIN POHJAUTUVIEN MALLIEN VERTAILU MITOITUSOHJEESSA ESITETTYYN MALLIIN

Edellä esitetyissa materiaalimalleissa on siis käytetty transienttikokeiden tuloksiin perustuvia malleja materiaalien mekaanisille ominaisuuksille palolämpötiloissa. Teräsrakenteiden palomitoitusohjeessa Eurocode 3: Part 1.2 on näille ominaisuuksille annettu taulukossa 2 esitetyt vähennyskertoimet. Kuvissa 12 - 16 on verrattu toisiinsa mitoitusohjeen /1/ ja edellä esitettyjen materiaalimallien jännitys-venymäkäyriä rakenneteräksille S350GD+Z ja S355 lämpötiloissa 100°C - 700°C.

Kuva 12. EC3:n palomitoitusmallin ja transienttikokeiden koetulosten mukaan muokatun materiaalimallin jännitys-venymäkäyrien vertailu rakenneteräkselle S350GD+Z lämpötilassa 100°C.

Kuva 13. EC3:n palomitoitusmallin ja transienttikokeiden koetulosten mukaan muokatun materiaalimallin jännitys-venymäkäyrien vertailu rakenneteräkselle S350GD+Z lämpötilassa 200°C.

Kuva 14. EC3:n palomitoitusmallin ja transienttikokeiden koetulosten mukaan muokatun materiaalimallin jännitys-venymäkäyrien vertailu rakenneteräkselle S350GD+Z lämpötiloissa 300°C ja 400°C.

Kuva 15. EC3:n palomitoitusmallin ja transienttikokeiden koetulosten mukaan muokatun materiaalimallin jännitys-venymäkäyrien vertailu rakenneteräkselle S350GD+Z lämpötiloissa 500°C, 600°C ja 700°C.

Kuva 16. EC3:n palomitoitusmallin ja transienttikokeiden koetulosten mukaan muokatun materiaalimallin jännitys-venymäkäyrien vertailu rakenneteräkselle S355 lämpötiloissa 100°C - 700°C.

Kuvista 12-15 huomataan, että EC3:n mallin jännitys-venymäkäyrät nousevat tässä artikkelissa esitetyn, transienttikoetulosten perusteella EC 3: Part 1.2:n mukaisesti muodostetun mallin yläpuolelle kaikissa lämpötiloissa ohutlevyrakenneteräkselle S350GD+Z. Kuvasta 16 nähdään, että rakenneteräksen S355 mallit taas nousevat suurimmaksi osaksi mitoitusohjeen mallin yläpuolelle, joten mitoitusohjeen materiaalimallin käyttäminen mitoituksessa antaa varmalla puolella olevia tuloksia.

RAMBERG - OSGOOD:N MATERIAALIMALLI

Rakenneterästen transienttikokeiden perusteella muodostetut jännitys-venymäarvot mallinnettiin käyttämällä W.Rambergin ja W.R.Osgood:n kehittämää materiaalimallia /5/. Ramberg-Osgood:n materiaalimallissa on venymän ja jännityksen välinen riippuvuus eri lämpötiloissa esitetty seuraavalla kaavalla:

$$\varepsilon_{i} = \frac{\sigma_{i}}{E(T)} + \frac{3}{7} \cdot \left(\frac{\sigma_{y}(T)}{E(T)}\right) \cdot \left(\frac{\sigma_{i}}{\sigma_{y}(T)}\right)^{n(T)}$$
(13)

jossa

 ε_i on venymä lämpötilassa T jännityksen σ_i vaikutuksesta,

 σ_i on jännitys,

E(T) on kimmokerroin lämpötilassa T,

 $\sigma_v(T)$ on myötöjännitys lämpötilassa T ja

n(T) on lämpötilasta riippuva vakio.

A. O. Olawale ja R. J. Plank /2/ ovat esittäneet lämpötilasta riippuville tekijöille $\sigma_y(T)$, E(T) ja n(T) seuraavalla sivulla taulukossa 5 esitetyt arvot.

Taulukko 5. Parametrien lämpötilariippuvuudet Olawalen ja Plankin mukaan /2/ Ramberg-Osgood:n materiaalimallin laskennassa.

Lämpötila T	Myötöjännitys σ _y	Kimmokerroin E	n
(°C)	(N/mm ²)	(N/mm ²)	
$20 < T_1 \le 250$	σ _y (0,978-9,74e-5*T)	$E(1-1,27e-6*\gamma^2)$	4600/T + α
$250 < T_i \le 400$	σ _y (0,978-9,74e-5*T)	E(1-1,27e-6*γ ²)	$2650/T + \alpha$
$400 < T_1 \le 550$	σ _y (1,553-1,55e-3*T)	$E(1-1,27e-6*\gamma^2)$	$2400/T + \alpha$
$550 < T_i \le 600$	σ _y (2.34-3.143e-3*T)	$E(1-1,402e-6*\gamma^2)$	3900/T + α
$600 < T_{i} \le 690$	σ _y (1,374-1,56e-3*T)	$E(1-1,402e-6*\gamma^2)$	3600/T + α
$690 < T_{i} \le 800$	σ _y (1,12-1,28e-3*T)	$E(1-1,402e-6*\gamma^2)$	$4600/T + \alpha$

 $kun \gamma = T_i - 20 \ ^{\circ}C$

ja $\alpha = T_i / [500 \ln(T/1750)]$

Ohutlevyrakenneteräs S350GD+Z

Ohutlevyrakenneteräksen S350GD+Z (Z35) jännitys-venymäarvot mallinnettiin Ramberg-Osgood:n mallin mukaan transienttikokeiden koetuloksista /4/. Mallinnuksessa on kimmokertoimen E(T) arvot laskettu aikaisemmin esitetyillä kaavoilla (1) ja (2). Myötöjännityksen σ_y ($\sigma_{p0.2}$) arvot on laskettu transienttikokeiden perusteella määritetyllä kaavalla (14). Taulukossa 6 on esitetty laskennassa käytetyn parametrin n(T) arvot lämpötiloissa 20°C-300°C. Lämpötilojen väliarvot lasketaan interpoloimalla. Lämpötiloissa 300°C - 700°C lasketaan tekijän n(T) arvo yhtälöllä (15).

Myötöraja oy

,

 $\sigma_{\rm y} = 8.01 \cdot 10^{-9} \cdot {\rm T}^4 - 1.112 \cdot 10^{-5} \cdot {\rm T}^3 + 0.00422 \cdot {\rm T}^2 - 0.72 \cdot {\rm T} + 363$, kun 20°C ≤T ≤700°C (14)

missä

on myötöjännitys lämpötilassa T (N/mm²) ja σy

Т on teräksen lämpötila (°C).

Taulukko 6. Teräksen S350GD+Z jännitys-venymäarvojen laskennassa käytetyn parametrin n(T) arvot lämpötiloissa 20°C - 300°C.

Lämpötila T	Parametri n(T)
(°C)	
20	230
50	64
100	32
200	21
300	12

 $n(T) = 12 - 0.0176 \cdot (T - 300),$ kun 300°C≤T≤700°C

(15)

missä

n(T) on parametri n lämpötilassa T ja

Т on teräksen lämpötila.

Kuvassa 17 on verrattu teräksen S350GD+Z mallinnettuja jännitys-venymäkäyriä transienttikokeiden /4/ koetuloksiin lämpötiloissa 300°C-700°C.

Kuva 17. Ohutlevyrakenneteräksen S350GD+Z jännitys-venymäkäyrät lämpötiloissa 300°C - 700°C Ramberg-Osgoodin mallin mukaan verrattuna transienttikokeiden koetuloksiin.

Kuvasta 17 nähdään, että Ramberg-Osgoodin materiaalimallia voidaan soveltaa ohutlevyrakenneteräkselle S350GD+Z. Tässäkin mallissa on olennaista, että materiaalin mekaanisten ominaisuuksien arvoina käytetään kokeellisesti määritettyjä arvoja. Jos ohutlevyrakenneteräkselle S350GD+Z lasketaan jännitys-venymäarvot Ramberg-Osgood:n mallilla käyttäen taulukossa 5 esitettyjä Olawalen ja Plankin kaavoja, kulkevat mallin jännitys-venymäkäyrät huomattavasti transienttikokeiden koetulosten yläpuolella. Mallin jännitys-venymäkäyrät lämpötiloissa 100°C -700°C on esitetty kuvassa 18 ja kuvassa 19 on transienttikokeiden koetulosten perusteella mallinnetut jännitys-venymäkäyrät lämpötiloissa 100°C.

23

Kuva 18. Ohutlevyrakenneteräksen jännitys-venymäkäyrät Ramberg-Osgood:n mallin mukaisesti käyttäen Olawalen ja Plankin esittämiä kaavoja.

Kuva 19. Ohutlevyrakenneteräksen S350GD+Z transienttikokeiden koetulosten perusteella Ramberg-Osgood:n mallin mukaan muodostetut jännitys-venymäkäyrät lämpötiloissa 100°C-700°C.

Rakenneteräs S355

Myös rakenneteräksen S355 jännitys-venymäarvot mallinnettiin transienttikokeiden koetulosten perusteella käyttäen Ramberg-Osgood:n mallia. Kimmokertoimen E(T) arvo lasketaan käyttäen aikaisemmin esitettyjä kaavoja (6) ja (7). Myötöjännityksen σ_y ($\sigma_{p0.2}$) arvo lasketaan yhtälöillä (16) ja (17). Taulukossa 7 on esitetty laskennassa käytetyn parametrin n(T) arvot lämpötiloissa 20°C-300°C. Lämpötilojen väliarvot lasketaan interpoloimalla. Lämpötiloissa 300°C - 700°C lasketaan tekijän n(T) arvo yhtälölllä (18).

$\sigma_{y}(T) = \sigma_{y20^{\circ}C} - 0.016667 \cdot (T - 20)$,	kun $20^{\circ}C \le T \le 200^{\circ}C$	(16)
$\sigma_{\rm y}({\rm T}) = 352 - 0.54 \cdot ({\rm T} - 200) \; ,$	kun $200^{\circ}C < T \le 700^{\circ}C$	(17)

missä

$\sigma_y(T)$	on myötöjännitys lämpötilassa T (N/mm2) ja
σ _{y20°C}	on myötöjännitys huoneenlämpötilassa
Т	on teräksen lämpötila (°C).

Taulukko 7. Rakenneteräksen S355 jännitys-venymäarvojen laskennassa käytetyn parametrin n(T) arvot lämpötiloissa 20°C - 300°C.

Lämpötila T	Parametri n(T)
(°C)	
20	230
-100	190
200	140
225	54
250	28
300	14

 $n(T) = -0.00001343 \cdot T^{3} + 0.0043 \cdot T^{2} - 0.8529 \cdot T + 245.43, \text{ kun } 300^{\circ}C \le T \le 700^{\circ}C$ (18)

missä

n(T) on tekijä n lämpötilassa T ja

T on teräksen lämpötila (°C).

Kuvassa 20 on esitetty mallin jännitys-venymäkäyrien vertailu koetuloksiin lämpötiloissa 300°C -700°C.

Kuva 20. Rakenneteräksen S355 jännitys-venymäkäyrät lämpötiloissa 300°C - 700°C Ramberg-Osgood:n mallin mukaan verrattuna transienttikokeiden koetuloksiin.

YHTEENVETO

Rakenneteräksen S355 transienttikokeiden perusteella mallinnetut jännitysvenymäkäyrät kulkevat Eurocode 3: Part 1.2:ssa esitetyn mitoitusmallin mukaisten jännitys-venymäkäyrien yläpuolella koko tutkitulla lämpötila-alueella. Transienttikokeiden perusteella muokatun Ramberg-Osgood:n mallin jännitys-venymäkäyrät kulkevat myötörajaa pienemmillä venymän arvoilla alkuperäisen mallin yläpuolella, mutta suuremmilla venymän arvoilla sen alapuolella.

Tutkituista materiaalimalleista on huomattavaa, että mallinnettaessa jännitysvenymäarvoja transienttikokeiden koetulosten perusteella, jäävät ohutlevyrakenneteräksen S350GD+Z koetulokset mitoituksen kannalta varmalle puolelle. Jos mallinnus taas tehdään käyttäen mitoitusohjeessa /1/ tai materiaalimallissa /2//5/ annettuja materiaalin mekaanisten ominaisuuksien laskentakaavoja, jäävät koetulokset näiden mallien arvojen alapuolelle. Tämä ei tietenkään ole tarkoituksenmukaista teräsrakenteiden paloteknisen mitoituksen kannalta. Olennaisintahan mitoitusta palvelevissa materiaalimalleissa on, että niitä käyttämällä saadaan teräsrakenteelle riittävä varmuus palotilanteessa. Olisikin vielä syytä käydä keskustelua mitoitusohjeissa esitettävien mallien käyttökelpoisuudesta kaikille rakenneteräksille.

Kirjallisuusviitteet

/1/ European Committee for Standardisation (CEN), Eurocode 3: Design of steel structures, Part 1.2 : Structural fire design, Brussels 1993.

/2/ Olawale A.O., Plank R.J., The collapse analysis of steel columns in fire using a finite strip method, International Journal for Numerical Methods in Engineering, Vol. 26 2755-2764, 1988.

/3/ Outinen J., Mäkeläinen P., Transient state tensile test results of structural steel
S355 (RAEX 37-52) at elevated temperatures. Research report nr. TeRT-95-02,
Helsinki University of Technology, Laboratory of Steel Structures, 1995.

/4/ Outinen J., Mäkeläinen P., Transient state tensile test results of structural steel S350 GD+Z at elevated temperatures. Research report nr. TeRT-95-07, Helsinki University of Technology, Laboratory of Steel Structures, 1995.

/5/ Ramberg W., Osgood W.R., Description of stress-strain curves by three parameters, NACA Technical Note No. 902, 1943.

/6/ Standard SFS-EN 10 025: Hot rolled products of non-alloy structural steels. Technical delivery conditions. (in Finnish), Helsinki 1991.

/7/ Standard SFS-EN 10147: Continuously hot-dip zinc coated structural steel sheet and strip. Technical delivery conditions (in Finnish), Helsinki 1992.

Jyri Outinen, tutkija, tekn.yo Jyrki Kesti, assistentti, DI Pentti Mäkeläinen, Prof., TkT Teknillinen Korkeakoulu, Teräsrakennetekniikan laboratorio