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A brief review is made on presently existing methods for analysing the behaviour of 

composite flexural members, and on the difficulties in solving the resulting equations. 

Then, a set of fonnulas suitable for general applications is derived with the sectional 

equilibrium method. By applying physical principles of the Gauss-Seidel iteration 

method, the solving process for the simultaneous equations is converted into a series of 

iterations. In order to accelerate convergence, an algorithm is developed. This algorithm 

predicts the final slip pattern for the member by making use of previous iterations. 

Finally, results of example calculations are compared with tested or calculated results 

published elsewhere. 

INTRODUCTION 

Steel-concrete composite beams and one way slabs are composed of steel and concrete 

components interconnected by some means of interface connections. In general, 

properties of materials and load-slip relationship of connectors can be as complicated as 

shown in Fig. 1. The coexistance of the nonlinear behaviour of steel, concrete and 

connectors causes difficulties for the analysis of composite members. Experimental 

studies have been the most important and reliable means in research on the behaviour of 

composite members. In order to conduct more rigorous and systematic studies, there 
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have been many methods proposed for setting up analytical models for composite 

flexural members. 
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Fig. 1. General Material and Connector Behaviour: (a) Steel; (b) Concrete; and (c) 

Connector 

Newmark et al (1951) derived a second order differential equation with respect to 

intelface slips for composite beams. The equation was solved in closed fonn or solved 

numerically by the finite difference method. Formulations of that model were only 

capable of treating elastic material problems. Dabaon et al (1993) presented a similar 

second order differential equation capable of dealing with problems with nonlinear 

material and connector properties. Similar to the work of Yam and Chapman (1968), 

Zaremba (1988) derived a pair of coupled first order differential equations. The pair of 

coupled differential equations was solved by forward numerical integration method. 

Ansourian and Roderick (1978) presented a numerical model for composite beams. This 

model used the conditions of sectional equilibrium. The relationships coupling discrete 

sections were set up by the specially defined slip strains. Thus a set of simultaneous 

equations could be derived. By solving these simultaneous equations, the problem was 

solved. 
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Daniels and Crisinel (1993) , Daniels, et al (1990) used finite element method to set up a 

model for composite slabs. Modified beam elements were used to represent steel and 

concrete components. A step by step iteration process was used to solve the problem. 

A calculation process using the sectional equilibrium conditions but avoiding the 

difficulties in solving the simultaneous equations has been developed. This is described 

here. The solution procedure has clear physical interpretations which provide the 

programming and debugging with ease and convenience. 

Both beams and slabs are beam-like flexural members and there is no fundamental 

difference between the two members. Therefore, except that it is necessary to 

differentiate beams and slabs, flexural members will be refened as beams thereafter. 

BASIC EQUATIONS 

For the sake of generality, investigation is made for a composite beam of an arbitrary 

mono-symmetric cross-sectional shape as shown in Fig. 2. Under the action of external 

moment load M(i), any cross section i must satisfy: 

Fc(i) + Fs(i) = 0 (1) 

M (i) = Mc(i) + Ms(i) (2) 

Fc(i) = f Ec · p(i) ·[Y - yco(i)] · dA (3) 
Ac 

Fs(i) = f Es · p(i) · [y- yso(i)] · dA (4) 
As 

M c(i) = f Y · Ec · p(i) · [y- yco(i)] · dA (5) 
Ac 
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Ms(i) = I Y • Es · p(i) · [y - yso(i)] · dA (6) 
As 
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Fig. 2. A beam divided into n elements and the stress distribution in a section 

where p(i) is the curvature of the beam at section i; Ec, Es are tangent moduli of 

concrete and steel, respectively; Ac, As are the section area of concrete and steel 

components, respectively. 

Equations (1) to (6) are in a general fonn. While using numerical integration, materials 

with arbitrary constitutive properties and sectional shapes can be processed. Some 

factors like residual stresses and prestressings can be incorporated by revising the 

materials' constitutive laws. 

In cases of complete interaction, equation Yc0 (i)=Ysii) holds. So there are 6 unknowns 

Fc(i), Mc(i), Fs(i), Ms(i), p(i) and Ys0 (i) or Ycii) with 6 equations. The problem can be 

solved for any individual section. However, in the cases of incomplete interaction, 

inequality Yeo -:f:. Yso holds. In such cases it is not possible to solve the equations merely at 

individual sections. 
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Suppose that the beam is divided into n segments of beam elements by n+l sections as 

shown in Fig. 2. Denote slips of section i and section i+ I as s(i) and s(i+ 1) and define 

the slip strain esp as: 

(
.) s(i)-s(i+l) 

Esp l = --'-_;_____:.._...:.... (7) 
Xi+I-Xi 

Assume that the concrete part and the steel part are only connected by connectors and 

the connectors are concentrated at element ends. Denote the connection force in 

connector i as Fconn(i) . The following relationship must exist: 
i 

Fc(i) = I. Fconn(j) 
j = l 

i-1 

or Fconn(i) = Fc(i)- I.Jconn(j) 
i=l 

(8) 

(8') 

On the other hand, the connector force Fconn(i) is a known function <p(s(i)] which can 

be obtained from connector tests or is defined by design specifications. 

Fconn(i) = <p[s(i)] (9) 

If the conunonly used Kirchhoff or Bernoulli-Navier assumption (cross-sections remain 

plane in bending) is adopted (Fig. 3.), the following eq. (10) can be derived: 

(
.) s(i)-s(i+l) 

~£ l = = Esp(i) 
Xi+I-Xi 

~e(i) = p(i) · ~Y = p(i) · (yco (i)- yso(i) 

s(i) - s(i +1) 

Xi + I - Xi 
= p( i ) 0 [y co( i) - y so( i ) ] (10) 
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Fig. 3. Strain distribution over the cross-section 

Now for each section there are 2 unknowns S(i), Fconn(i) and 3 equations (8), (9) and 

(10) have been added. So the problem can be solved but the simultaneous equations 

coupling all the 11+ 1 sections are involved. Note that when steel and concrete adopt 

general nonlinear properties, the integrations in eq.(l) to eq.(6) can not have closed 

forms. They can be numerically integrated only after the locations of neutral axis are 

known. If the load-deformation function <p of the connector is also nonlinear and if there 

are more complications like changes in sectional dimensions along the axis, etc., to solve 

this set of simultaneous numerical equations can be extremely difficult. It is experienced 

that the difficulty of solving the problem is mainly because all sections are coupled. If a 

way can be found to decouple all the sections then the solution will be easier. 

SOLVING THE EQUATIONS 

Gauss-Seidel iteration (moment distribution) method is n01mally used in the analysis of 

statically indeterminate frame structures (West 1980). This method has the advantage of 

avoiding solving simultaneous equations. In order to decouple the present nonlinear 

simultaneous equations, the physical ptinciple of the Gauss-Seidel iteration method can 

be applied here. 
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a. Assume complete interaction for the whole beam: concrete and steel have the same 

neutral axis. From equation (1) to (6) Fc(i), p(i) and the location of neutral axis are 

obtained for every section. This corresponds to the 'clamping' stage in Gauss-Seidel 

iterations. 

b. For each section there is an unbalanced force Fc(i-1)-Fc(i). This unbalanced force 

tends to cause section i to slip. If the 'clamp' is released for this section, section i will 

slip. When section i has a slip increment llS(i), neutral axis of section i and section i-1 are 

changed according to eq.(lO). From eq. (1) to (6) the new Fc(i) and p(i) are obtained. 

Eq. (11) specifies the condition for a stable state of section i. 

Fc(i -1) - Fc(i)- Fconn(i) = 0 (11) 

This is the 'releasing' stage for section i. 

c. Apply step b. for every section consecutively and repeat along the beam untill 

balance is reached for all sections. The balance criterion of a section is as follows: 

i-1 

Fc(i)- 2.Jconn(j):::; (specified accuracy) · Fc(i) 
j=l 

(12) 

When eq. (12) is satisfied for all sections, the process is converged. p(i), YcoO) and 

Yso(i) are obtained for all values of i . 

After the convergence, deflection y(x) of the beam can be integrated as: 

X[~ l X y(x)= J J p·d; ·dT]+ J Cl·dx+C2 
0 0 0 

(13) 

where C1 and C2 are constants detennined by boundruy conditions of the beam. 

This is a routine and simple process. Each step has a cleru· physical meaning and the 

satisfactions of the equations are easy to be checked. So when anything goes wrong in 
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the calculation, it is very easy to find out the reason. This is very useful for debugging in 

programming. 

ACCELERATING THE CONVERGENCE 

The process converges fast in cases when the stiffness of connectors is close to the axial 

stiffness of concrete component. Whenever the connector stiffness is very low or the 

connection level is low, the process converges ve1y slowly. The reason for this is as 

follows: When a section is released, all the rest sections are still fixed. Axial stiffness of 

the concrete part prevents the section from moving to its 'expected' place. So the slip 

increment in one round of iteration is vety limited. In the case of low connection level, 

slips can only propagate from the ends to the central part of the beam. In order to make 

this method practically valuable, an algorithm accelerating the convergence of the 

process has to be found. In view of this the authors have developed an algorithm to 

accelerate the convergence. Various applications show that it is efficient and genemlly 

applicable. 

The ptinciple of the algorithm is to apply the extrapolation technique to the iteration 

process. The algmithm predicts the final slip pattern by making use of the previous 

iteration results. It goes in the following way: Beginning from iteration k let the program 

iterate further m round. Record the values of unbalanced forces 
i-l 

FunbalanccJ(i) = Fc(i)- "'Fconn(j) and slips s(i) for every section at iteration k and 
J=l 

iteration k+m. The changes in s(i) during this m iterations are: 

As(i) = [s(i)]k+ m-[s(i)]k i=l,2, ... n+l, (14) 

The changes of the unbalanced force, I:Junbalan,·cii) in this m iterations are: 
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ll.F'unbalanced(i) = [ FunbafanceJ(i) ]t + m - [ Funbahmced(i) ]k, i=l,2, ... n+l, (15) 

The present unbalanced forces are: 

Funbalanced(i) = [ Funbalanced(i) ]k + m, i=l,2, ... n+l 

Then, the expected final slips s(i) are: 

s(i) = [s(i)]k+m+i tis(i) ·i·Fuubalanccd(i). i=l.2 •... n+l. 
tl.F'unbalanced( l) 

(16) 

In this way, a pattern of slips along the beam is predicted. The process can go on with 

iteration from this predicted pattern of slips. This process can be repeatedly used until! 

the convergence of the iteration. Sometimes in the calculation process tifunbalanced(i) may 

approach zero. In such cases just omit the second term on the right side of eq. (16). 

Eq. (16) works like a penalty function. It 'pulls' the slips to their equilibrium state. The 

value inside the absolute sign determines how much the 'fine rate' will be. Because it 

makes use of previous iteration results the algorithm is robust and efficient. 

Now the problem is to choose a suitable iteration interval 111 . If 111 is too small the process 

may jump back and forth (fmally it will converge, though) because iteration process can 

not give a good prediction for convergence. If 111 is too large the process converges 

slower because less accelerating algorithms have been used. Experience of the authors 

shows that a value of 111=5 is good for many cases except for cases of unevenly 

distributed connections. A value of 111=10 is satisfactory for most cases. 

Experience shows that the developed algorithm is vety efficient. The authors have 

experienced a case of nonconvergence after 10000 iterations without applying the 

accelerating process. With the help of this algorithm, convergence can be reached within 
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100 iterations for one load step for most cases. One other advantage of this algorithm is 

that it only slightly adds extra work for the computer. 

For the sake of an easy illustration, slip was chosen as the predicted variable in the above 

description. In fact, in view of programming, slip is not a good choice. Because if slip is 

the predicted variable, in the application process coupling of neighbming sections must 

be involved. A good choice of the predicted variable should satisfy two conditions: 1. It 

should not cause the failure of the process no matter how big a prediction will be; 2. It 

should not couple other sections. c,y(i) = Yco (i) - y.o(i) suits for condition 2 well but 

does not satisfy condition 1. The best choice may be the slip strain £sp(i) = p(i) · c,y(i). 

This variable does not involve neighboring sections and, no matter how big the predicted 

£5p(i) is the program can reach it by adjusting p(i) and C;y(i) (at least theoretically so). 

COMPARISONS BETWEEN TEST AND CALCULATED RESULTS 

In order to check the validity of this method, comparisons are made between the 

analysed results and some test results published elsewhere. The sketches of the related 

member sections are shown in figures 4, 5 and 6. 

Fig. 4 shows the tested and calculated load-deflection curves for ZHL-1. ZHL-1 is a 

4.9m span composite beam, consisting of a profiled !-section and a concrete slab which 

was tested by Lu and Zang (1989). 

Daniels and Crisinel (1993) developed a finite element program to analyse composite 

slabs. In Fig. 10 of their paper, calculated M-o curves are shown for a composite slab 

with different spans. In order to compare the method developed by them and the one 

described here, calculation is made for the same slab using the same data they have used. 
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Fig. 5 shows the calculated results . By comparing, it is seen that curves in Fig. 5 are 

almost identical with those in Fig. 10 of their paper. This attests the validity of these two 

different analysis procedures. 
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Fig. 6. shows the moment-deflection curve of a composite slim floor beam tested at the 

Helsinki University of Technology by Lu and Makeltiinen (1994). The beam has a span 

of 5.8m with 148nun diameter holes in the webs. The edges of the holes are bent inside 

to act as shear connectors. The result highlights the effects of residual stresses. 
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Fig. 6. Comparison between calculated and tested results of CS-1 

CONCLUSIONS 

Computational model is an important tool for researchers investigating composite 

structures. It is common that researchers develop their own models. Over decades some 

methods have been used and many successful models have been presented. For the 

method using sectional equilib1ium conditions, there will be a set of simultaneous 

equations to be solved. Because of the complex behaviour of composite member, the 

process of solving the equations can be very difficult. Progranuning of this process will 

also be troublesome. In some cases, numerical difficulties and convergence can be 
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serious problems. This paper makes an effort to set up a unified formulation and solving 

process for general applications. It is concluded that: 

1. Formulas in this process are in a general fonn. They are applicable to any continuous 

material and connection constitutive laws. Parameters like residual stresses, prestressing, 

end anchorages, etc., can be routinely incorporated in the process. 

2. By introducing the principle of Gauss-Seidel iteration method, the equation solving 

process is simplified. The simplification makes the equation solving a unified routine 

process. It can easily avoid numerical difficulties. The physical interpretation guarantees 

its convergence. 

3. The algorithm applied to accelerate the convergence is robust and efficient. Because 

of this algorithm, the idea of applying the Gauss-Seidel iteration becomes practically 

feasible. 

4. The simplicity and unifonnity of the process and its physical meaning make compiling 

and debugging of the program easy. This can reduce much work of the developers. 

5. Sample runs of the process verify the applicability and generality of the process. 
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