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SUMMARY: Two algorithms for dynamical problems in linear elasticity based on one 
of the variational principles derived by Gurtin are investigated. Discretization is based 
on the Kantorovich approximation and the finite element method (FEM) in space 
variables. One-step, implicit, unconditionally stable, without approximation viscosity 
algorithms as a result of the time discretization are considered for solving the problem 
in time. The numerical dispersion and some other properties of the algorithms are 
discussed too. Both algorithms are analyzed from the point of view of methods of 
solution. It is shown that the best way to solve the first algorithm is to use a direct 
method, and in the case of the second one is to use an iterative method. A joint iterative 
procedure for optimal computer solution of different linear elasticity dynamical 
problems with the help of both algorithms is given. 

PRELIMINARY REMARKS 

I In dynamical problems solved by the FEM the approximation of Kantorovich [1] is 
mostly used for the representation of unknown functions: 

u(x,t) = U(x) q(t) . (1) 

In equation (1) u(x,t) in an unknown K component vector-valued function; q(t) is an 
unknown N component vector of nodal values of u; U(x) is a known (given) KxN 
dimensional matrix of interpolation; t is time; x is a vector of space variables, i.e., for 
example, in 3D problems: x=(x1,x2,x3)T; ( )T means a matrix or a vector transpose. 
Vectors and matrices are denoted by the boldface type. 

The hypothesis (1) has the fundamental meaning for both discretization of the problem 
and the investigation of the properties of the algorithms and the numerical solution. For 
the first reason it means that the discretization procedure will be divided into two 
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practically independent parts: the construction of the FEM in space variables and the 
numerical solution of the finite element (FE) matrix equation of motion in time. On the 
other hand after using (1) it is easy to investigate the obtained algorithms because such 
kind of investigation is based on the analysis of spectral properties of the calculation 
schemes. 

Let us think that u means the displacement in 3D linear elasticity problems (K=3, 
u=u(x1,x2,x3,t)=(u1,u2,u3)T), when we'll consider the theoretical aspects, and in 2D 
problems (k=2, u=u(x 1,x2,t)=(u 1,u2)T), when we'll speak about a program realization 
and numerical examples. Other vectors and matrices shall be changed respectively. 

II The first step of the discretization the construction of the FEM in space variables) 
is practically the same as in the static problems. Usually it is applied to the virtual 
displacement principle designed for the dynamical problem [2] which means the 
realization of the FEM in the form of the Galerkin method and leads to the well known 
FE equation of motion: 

Mq+Kq=F, (2) 

q(O) = q 0 , v(O) = v0 , (3) 

where M and K are mass and stiffness matrices, respectively; F=F(t) is the nodal point 
force vector, consisting volume and surface nodal point force vectors; v(t)=q(t) is the 
nodal point velocity vector; upper dots denote the time derivatives; q0,v0 are the nodal 
point initial displacement and velocity vectors. 

Application of the FEM procedure in space variables to the Gurtin's functionals [3,4] is 
another way. It means the construction of the FEM in the form of the Ritz method and 
leads to the following matrix FE integral equation of motion (if Gurtin's functional of 
the Lagrange type is used): 

K(g*q)+Mq =g*F+M(q0 +tv0 ), (4) 

where: g=g(t)=t; "*" denotes the convolution operator. For example, for arbitrary 
functions <p(t) and q>(t) the <p*(j> means the following integral: 

I 

<p*(j> = f <p(t - 't)(j>{'t)dt. 
0 

Equations (2) and (4) are considered at the arbitrary moment of time t. It's easy to prove 
that one can get equation (4) by integrating equation (2) twice in time and taking into 
account (3) and vice versa: differentiating (4) twice one can get the statement (2)-(3). 

III. The second step of the discretization is connected with the construction of the 
calculation scheme in time. Direct integration schemes are applied more often for the 
wave problems which leads to step by step solution procedures. 
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Because of the discretization in time and space variables the calculation schemes 
(computer algorithms) have their own dynamical properties which differ from the same 
properties of the corresponding continuum problem. Though we consider dynamical 
problems without viscosity and dispersion the derived algorithms can possess the 
approximation viscosity and the numerical dispersion changing both the amplitude and 
the phase of the numerical solution. 

In order to control the viscous properties of algorithms terms Cv and C(g*v) are added 
to equations (2) and (4) correspondingly: 

Mq+Cv+Kq =F (5) 

and 

K(g*q)+C(g*v)+Mq = g*F+M(q0 + tv 0 ). (6) 

Let us take the artificial damping matrix C in the form: 

(7) 

where a and p are arbitrary parameters which will be used to control the approximation 
viscosity. The dispersion properties of the algorithms will be estimated with the help of 
numerical experiments on modal tasks. 

CONSTRUCTION OF ALGORITHMS 

Let us desctibe the general way of the construction of FE schemes for dynamical 
problems. If they are linear, implicit and one-step algorithms they can be represented in 
the following form [I ,5]: 

(8) 

where T11 ,T11 _1 are matrices, which can depend on the matrices K,M and time-step Li~1 ; 

R11 ,=R(~1 ) is the nodal point loading vector, constructed with the help of the vector F; 

Qt=(q(tl),v(t1),v(t1))T is the nodal point state vector at the time point tl; l=l'l, 11-1; 

n=l,2, ... Assuming that the inverse matrix of the T11 exists one can write (8) in the 

form: 

(9) 
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With respect to the general theory of numerical methods [1,5] numerical stability and 
approximation viscosity depend on the properties of some norm of the amplification 
matrix T. If one considers the spectral norm of the T then it leads only to necessary 
conditions and it becomes the sufficient criteria when the spectral norm of T equals to 
any other norm of this matrix [5]. For example, it is true if T is a positive definite 
matrix which is usually satisfied in the FEM and it will be true in our case. 

Let us interprete the method of the discretization of the FE equation of motion (5) or (6) 
as the finite element procedure in time (finite element on a time step). (Fig. 1) Every 
interval will be considered as independent from others; the solution from the given time 
step will be the initial condition for the next one, i.e. the arbitrary time interval [t,1_1 .t,] 
can be considered as the first interval [O,t], where t denotes here and further the value of 
the time step of the integration process in time. From equation (2) or ( 4) one can 
conclude that two vectors q('t) and v('t) are enough to describe the motion of the finite 
element system in time: see Fig.!, where 'tE [O,t]; q0=q(O), v0=v(O), q-y=q(yt), v'Y=v(yt); 

)'E (0, 1]. 

Fig.1 

q('t) 
Y('t)=q('t) 

"(I 

The arbitrary parameter)' will be used to change the stability and viscosity properties of 
the algorithm. One can write equation (8) in the form 

(10) 

where R=R 1. 

The matrices T1 and To have the following form: 

[

BII 
T-o- B 

21 

(11) 

where each block Ai,j• Bi,j is a linear combination of the matrices K, M and C with 
some coefficients which can depend on the time step t and on the parameter )'. Thus the 
amplification matrix T of the algorithm (10) depends on the arbitrary parameters a, p, )' 
and by changing them one can maintain the numerical stability and exclude the 
approximation viscosity from the algorithm. 
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II Consider two approximation polynomials for our time element shown in the Fig.l 
- the third order polynomial 

q( 't) = (1- 30 2 + 20 3 )qo + yt(0- 20 2 + 03 )v 0 + 

+(302 -203 )qy +yt(-0 2 +03 )vy , 

where 0 = 1:/("(t), and the second order polynomial: 

(12) 

(13) 

III Consider the algorithm for the second order polynomial (13) first. If one 
substitutes (13) into (6) one can be obtain the system of the linear algebraic equations 
(SLAE) conceming with the nodal point displacement vector q'Y and depending on the 

parameters ex, ~, 'f. For concrete value of these parameters one can solve the SLAE and 
find q'Y. Vector v'Y can be found with the help of the differentiation of the 

approximation polynomial (13) in the following form: 

(14) 

Both equations are the pair composing the algorithm in the form of (10) where the 
matrix block A 12 equals zero. 

One can find the values of parameters ex, ~, 'Y giving the unconditional stability and 
excluding the approximation viscosity from the algorithm. They are 

rv - 0 fl. - -.!.. Y -l. v..-' ....,- 6 ' -6. (15) 

And thus the algorithm for the second order approximation polynomial (13) takes the 
following form: 

(16) 

where I is the unit matrix. 

Such kind of an algorithm for the quadratic polynomial assumption of the displacement 
field was discussed first in [6,7]. But in the form (16) it was given in [8]. 

IV Let us consider the algorithm for the third order polynomial (12). If one substitutes 
(12) in the FE equation of motion (6) one can observe the SLAE with two nodal point 
vectors q'Y and vy : N algebraic equations with 2N unknowns. To construct the 
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algorithm let us take with FE equations of motion (5) and (6) two equations more 
obtained after differentiation of equations (5) and (6) 

Mv+Cv+Kv=F (17) 
and 

(18) 

where g = 1. 

Arbitrary two from these four equations (5), (6),(17) and (18) or arbitrary linear 
combinations from these equations leading to the two FE equations can be used for the 
construction of the algorithm. Let us take equation (18) and a linear combination of 
other equations with arbitrary parameters o, ~, 'll· Substitute the approximation 
polynomial (12) and get the algorithm in the form (10) which will depend on six 
parameters: a, p;y, o, ~, l] . The combination 

a = 0 , 13 = 0 , y = 1, o = - ~, ~ = f, ll = f (19) 

gives to the algorithm the unconditional stability and excludes the approximation 
viscosity. As one can see it is not necessary to use the artificial damping matrix (o:=P 
=0) and the numerical solution will be obtained at the end point of the time interval ('Y 
=1). So, one can write the algorithm for the polynomial (12) in the following form: 

where F1 =· 3~F+iF+ 5~'g*F, F2 =g*F, q=q.
1

=q1 , v=vr=v1 • The algorithm 

of this kind was discussed in [9, 10]. 

ANALYSIS OF THE ALGORITHMS 

Both algorithms were realized in the FORTRAN -program for 20 elasticity problems 
and some numerical experiments were carried out to investigate different algorithmic 
and calculated properties, in particular, the numerical dispersion of algorithms. 
Triangular elements with the linear and quadratic approximation in space variables were 
used. 

I Because of the construction, algorithm (16) corresponding to the second order 
approximation polynomial (13) is a linear, one step, implicit, unconditionally stable, 
without approximation viscosity procedure for integration the problem in time. 

In order to estimate the numerical dispersion property of the algorithm propagation of 
waves of different length in a long beam was considered. All harmonics were expressed 
in terms of the number of finite elements on wave length. Calculations were done on 
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different finite element meshes. Based on these calculations the following was 
concluded: the algorithm possesses the normal numerical dispersion less than 3% for 
the wave components with more than 6 elements. For the harmonics less than 6 
elements the dispersion grows very quickly. One can conclude that the algorithm can be 
used rather successfully for calculations of wave fields caused by the influences 
composed with harmonics of more than 8-12 elements. 

Let us consider calculation properties of the algorithm. Because the block A 12 equals to 
zero calculation process is devided into two parts: solution of the SLAE concerning the 
nodal displacement vector q 113 and calculation of the nodal velocity vector v 113 . The 
second part doesn't contain the operation of matrix inversion. The first part can be done 
rather effectively. The matrix of this SLAE is the sum of the matrices K and M with the 
positive coefficients. That is why this matrix is the positive definite matrix and has the 
same structure (symmetry and banding) as K and M. If the time step t is not changed in 
the step by step procedure the matrix of the SLAE can be inversed only once before the 
time-step procedure and after that on each time step it is necessary to do only 
multiplications of different matrices by vectors and the summation of the received 
vectors. One can say that this kind of solution procedure is the most effective (from the 
point of view of the computer resources) for dynamical problems. 

As for deficiency of the algorithm one can mention the fact that the velocity v113 (for a 
next time step) is found with the help of the nodal displacement vector q 113 . In fact it 
means the differentiation of the numerically defined vector and it is not good for the 
short wave components in the numerical solution. One can come to the conclusion that 
this algorithm composed with the help of the second order approximation polynomial is 
fairly good for the solution of dynamical problems with sufficiently smooth solution 
(without short wave components). 

II Like the previous algorithm (16) the algorithm (20) corresponding to the third 
order polynomial (12) is a linear, one step, implicit, unconditionally stable, without 
approximation viscosity procedure for the solution of dynamical problems in time, too. 
It possesses the normal numerical dispersion of the same kind as the first one, but it is 
even better: the dispersion is less than 2% for wave components with more than 6 
elements on a wave length. 

Calculated properties of the algorithm (20) are not so good as in (16). Though each 
matrix block of the matrix of the SLAE (20) is composed with the help of matrices K 
and M and consequently has the same structure, some of them in common cases are not 
positive definite, either. It is necessary to solve the SLAE of the 2N order with the 
vectors q and v as unknowns with the non symmetric and non banded matrix which is 
not positive definite. Of course, it is not effective to use the direct method for solving it, 
but the special block construction of the matrix and the good properties of blocks allows 
to hope that one can obtain an effective iterative procedure. In this connection it is 
possible to use the first algorithm to define the initial approximation and thus it would 
be obtained a joint algorithm which will be considered further. 
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THE JOINT ITERATIVE ALGORITHM 

I Let us consider first the iterative procedure for solving the SLAE (20) . Let the 
algorithm (20) be written in the form 

(21) 

where 

(

Att 
A= 

A2t 

A 11 =(M+~';K); A 12 =f(M-~K); 

A21 = f K; A 22 = (M -t- K); 

zi is the right hand part of the i-th matrix equation in (20) (i=l ,2). Matrices A 11 and 

A2 t are positive definite matrices [11]. Matrices A 12 and A22 shall also be positive 
definite if one supposes that 

6 
t<- (22) 

(J)I 

where Wt is the maximum eigenfrequency of the finite element system, i.e. Wt = At, 
where At is the maximum eigenvalue of the matrix (M)-tK. It is supposed in the 
following that the condition (22) is satisfied. 

Let us consider the following iterative procedure: 

(23) 

It is easy to prove that this iterative process is convergent for any initial vector q(O) if 
the condition (22) is satisfied. The iterative process (23) is rather effective from the 
calculation point of view. If the time step t is not changed in the step by step procedure 
matrices A22 and A tt can be in versed only before the time step integration. Both are 
positive definite matrices and have same structure as K and M. 

II Though the iterative process (23) is convergent for any initial vector q(O) , a good 
initial approximation makes the speed of convergence faster. For accelerating the 
convergence in our case one can take the solution obtained from the algorithm (16) and 
consider both algorithms together in one joint algorithm. Let the first matrix equation of 
(16) be written in the form 

(24) 

consider the 
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q(OJ = A~lzo 
v(m+IJ = A;lzZz - A;lzAzl q("'J 

q(m+l) = A;llzl - A;IIA12 v(m+l) 

(25) 

Solution of the problem on each time step can be divided into three parts: solving of the 
problem with the help of the first equation from (25), the solution of the vector v (v<O)). 
with the help of the second equation from (16) or the second equation from (25) and 
making more precise both vectors by means of the last two equations from (25). It is 
possible to use only one or two or all three parts of (25) on each time step. It depends 
on the precision we need, ultimately from the mechanical point of view it depends on if 
any higher frequency harmonics are in the solution or not. The calculated properties of 
the joint algorithm are rather good and include the best properties of both algorithms. 

CONCLUSIONS 

Algorithms based on the Gurtin's convolution functional of the Lagrange type were 
considered in this article. It means the FEM realization in the form of the displacement 
method. But algorithms of this kind could be constructed also in the mixed form of 
FEM on the basis of the mixed Gurtin's convolution functionals. In particular, one has 
constructed and realized in the FORTRAN program some of algorithms on the basis of 
the first form of the Reissner convolution functional and of the Lagrange-Reissner 
convolution functional. 

All these algorithms are linear, one step, implicit, unconditionally stable, without 
approximation viscosity finite element procedures for solving dynamical elasticity 
problems in time. Different statical and dynamical elasticity problems were solved 
successfully with the help of the FORTRAN program based on all these algorithms and 
their statical analogs. There were model tasks and problems which have practical 
meaning. Some of these results can be found in [ 12, 13, 14,15] . 
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