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SUMMARY 

Bending strengths of open cross-section beams cold-formed from high­
srrength steel (HSS) are determined with non-linear analysis. Two kinds of 
beams are studied. The short beams are for examining the bending 
resistance of cross-sections and the long beams for studing the lateral 
buckling of open sections. The beams are modelled with shell elements 
and non-linear FEM analyses are carried out to predict the srrengths of the 
models. Both material and geometrical non-linearities are included in the 
analyses . The results are compared with experimental results. 

1 INTRODUCTION 

Steel members of moderately high slenderness have become widely used in modem 
engineering structures. The load capacity of such members is not easy to determine 
because of its dependence on a large number of parameters related to geomerric and 
material properties. Initial imperfection, residual srresses and other irregularities have an 
effect on the behaviour of the member. A . member may buckle locally before the 
ultimate load is reached, leading to a reduction in the load capacity. A base material of 
higher strength even increases these local instabilities owing to the higher slenderness. 
The design formulas available in design codes are mostly empirical. They have been 
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developed or at least verified by experiments. When the amount of phenomena 
increases. the number of tests needed to verify calculations becomes often large. 
Experiments are very rime-consuming and expensive to conduct Hence some interest 
has arisen for predicting the strength of structures by simulating actual tests and 
expanding their results numerically. 

Elastic buckling and non-linear analyses by finite element [2. 3, 7. 8] or finite strip 
methods (4, 5, 6, 9, 15] have been carried out. The applications used in the analyses 
are usually privately developed and not publicly available. Stability and static strength 
of structures can be studied with general finite element programs, when both material 
and geometrical non-linearities are modelled. The program should contain a method for 
analyzing post-critical response of the structure when the load factor decreases. Several 
generally available programs such as ABAQUS, ADINA and Nisa contain these 
capabilities. For this study the ABAQUS program [1] was chosen. 

In this srudy the potential of the general-purpose finite element code is examined as a 
supplementary tool for the static bending test. Physical tests are simulated with non­
linear analysis. In other words, a non-linear response is calculated for the models of the 
beams. The response of the model of the structure is analyzed and the maximum load­
carrying capacity is determined from the equilibrium path. The beams are modelled 
using shell-elements. All effects like distortion of the cross-section during buckling and 
effects of local instabilities are noted with these kind of models. Boundary conditions 
and loadings are set to match those employed in the physical tests . 

With the modelled tests the bending strength of singly symmetrical cold-formed beams 
is studied when they are loaded along the axis of symmerry [13]. The beams used in 
the tests are cold-formed from high-strength steel (HSS). The calculations of bending 
strength of cold-formed beams is divided into two groups on the basis of beam length. 
For short beams the cross-sectional bending strength, and for long beams lateral 
buckling strength is calculated. Tests were made to verify both cross-sectional (eight 
specimens) and lateral buckling strength (four specimens). In the analyses both cases 
also have details of their own in modelling. 

2 EXPERIMENTAL INVESTIGATION 

The bending strength is tested with four-point loading (figure 1). The tests were carried 
out in a 6000 kN MAN testing machine. The loading is transmitted to the test specimen 
through the compression platten of the testing machine and a stiff large-size hollow­
section beam. The end supports are on the compression planen, which is lifted with the 
hydraulic cylinder against the loading points, which are supported by the stiff beam. 

Especially in the lateral buckling tests some additional degrees of freedom were 
arranged in the support and loading points so that the buckling · lengths could be 
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determined. The main principle was that the bearings under the forces and the supports 
were free to move in the horizontal plane, but the rotation about the longitudinal axis 
was restrained. The other end support was restrained in the longitudinal direction. In the 
case of shon beams, sideways translations and venical rotations are both restrained 
under the forces and at end supports. In reality each individual degree of freedom was 
treated separately (figure 2). 

To avoid the opening of the channel, the flanges were connected together with a bar. 
The bars were either under the forces or at supports depending on the position of the 
section. To avoid local crushing caused by reaction forces there were additional bearings 
both under the forces and at the supports. The bearing length was 100 mm. 

A total of four different cross-sections were chosen; two c- and two hat-cross sections. 
The geometry of the sections is given by centre-line dimensions measured from the test 
specimens (figure 3 and table 1). Material thicknesses and the yield stresses are based 
on the longitudinal tension test results of flat-plate sections (table 3). In the table both 
lower and upper yield strengths are given. In those two cases where only one value is 
given, no exact limit value is found in the tension test. The value for 0.2-% permanent 
strain is given. 

Three different test specimens of each cross-section were tested. The cross-sectional 
bending strength was determined in both directions, but the lateral buckling strength 
only in the direction that lips were pressed. The specimen lengths and other dimensions 
of the test arrangement (figure 1) are shown in table 2. The measured strengths and 
notes about deformations during the tests are also given in the table. Mode "P" means 
deflection failure in the plane, "T" means that torsion of the beam is also observed, "S" 
means stiffener buckling and "L" local deformations under the bearing. The force in the 
table is given for one loading point (figure 1 ). 

More detailed information on the tests and test specimens modelled here are documented 
in the reference [13]. 

3 ANALYSIS MODEL 

The strength of beams is determined on the basis of non-linear analysis. Both 
geometrical and material non-linearities are included Geometrical non-linearity means 
that displacements caused by the loading lead to certain load-displacement responses of 
the model. The strength of the model can be determined from this response as the 
ultimate load in the loading history. A non-linear material model is included to model 
the loss of stiffness due to possible plastic strains. 

When the strength of the structure is studied with non-linear analysis, an initial 
disturbance is needed in some structures. For instance, with the Euler column a small 
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parallel force or initial imperfection is needed when the non-linear response is analysed 
In more complex structures the effect of a small force is difficult to control and the 
imperfection shape has many possible forms. It is difficult to decide what is the most 
critical one. This can be done with buckling analysis. General finite element codes 
contain the possibility of performing buckling analysis to determine buckling loads and 
modes. Although there are strict rules on when results of the buckling analysis are 
applicable in analyzing the strength of structures, the buckling modes represent the 
displacement fields possible for the structure [ 17]. The shape of the lowest eigenvalue 
describes the most potential displacement field of the structure. 

With cold-formed beams the first shape is not always the critical one, because there 
can be a local buckling shape. The number of shapes can be reduced to cenain possible 
shapes [14]. An advantage of using the shape from buckling analysis is that this mode 
can very easily be included in the model. In this way the load-displacement response 
of the model is controlled and the strength corresponds to that of the specific stability 
mode. This analysis procedure is tested for axially and eccentric compressed HSS 
channels [13, 14]. The results obtained are reasonable. 

3.1 MODELS Al'ID CONSTRAINTS 

The beams are modelled with shell-elements. Therefore all cross-sectional distortions 
and local buckling effects are possible in the model during the loading. Nodes are 
placed on the centre-line of the cross-section. Dimensions used in the models are given 
in table 1. Cross-sections are modelled right-angled. 

Owing to the use of shell-e lements the models become rather large, which increases the 
solution time. The economical use of elements is worth studying especially in the non­
linear analysis, when several iterations and loading steps has to be solved. The element 
mesh used also has an imponant effect on the accuracy of results. In these kinds of 
analysis no stress concentrations need to be modelled, but it is imponant that the 
stiffness of structures is modelled as accurately as possible. 

These cold-formed beams are of a prismatic nature. The cross-sectional division of 
elements also has an effect in the longitudinal element division, because element dimen­
sions have to be moderate. When parabolic shell-elements are used, the displacement 
field in local plate buckling can be modelled accurately with four elements. In the 
unstiffened lips, one or two elements are used. In the longitudinal direction the 
length/width ratio of elements is kept under three. This kind of element division is also 
sufficient, when material non-linearity is included in the model [11]. 

Loadings and constraints have to be arranged equal to those in the actual test 
arrangement. In the test set-up stiffening steel bearings are used to avoid local crushing 
of the beam. In the models these stiff plates are assumed to move linearly. This is 
arranged with constraint equations. The equations are modelled in the edges of the 
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cross-section so webs and flanges are not stiffened unnecessarily. The loading and 
constraints are placed in the middle node of these bearing regions. The bars, which are 
welded in the beams to avoid the opening of the cross-section, are modelled with 
trusses. As an example, in figures 4 and 5 the whole models of test cases Hl/MRl and 
C2/MR2 are shown. 

3.2 MATERIAL MODEL 

In a general finite element code, such as the ABAQUS program in this case, the normal 
elastic-plastic material model is assumed to be bilinear and the Bauschinger effect is not 
included. Von Mises yield function is usually used in these material models [ 1 ]. 

In these analyses, standard longitudinal tension test results were available for each 
modelled test specimen. The ideally elastic-plastic material model (figure 6) describes 
the measured srress-srrain relationships rather well . As the limit value the upper yield 
srress is used. Material constants used are the modulus of elasticity 210 GPa and 
Poisson's ratio 0.3. 

3.3 INITIAL IMPERFECTIONS 

Initial imperfection is used to lead the load-displacement response of the model to a 
certain shape of stability loss. With compressed structures some kind of disturbance is 
essential, because loading itself has no distorting effect on the model. Bending of the 
structure may present such an effect itself. Because of the shear forces induced by the 
loading, the short beams need no additional imperfections [II]. When lateral buckling 
of long beams is modelled, the symmetrical deformation caused by the loading does not 
give rise to the non-symmetrical buckling phenomenon. Imperfection is needed to 
disturb the model. The shape of imperfection is predicted by buckling analysis. Figure 
7 shows the first mode shapes of two test cases, C2/MR3 and Hl/MR3. The buckling 
loads from analyses are 119 kN and 83 leN, given as the force for one loading point 
(figure 1). · 

The size of imperfection can be decided for instance on the basis of actual measured 
imperfection or by the tolerances given in design codes. In this way some guidance can 
be obtained, but the absolute value is not reached. For instance, in the case when lateral 
buckling is modelled, should the size of imperfection be decided on cross-sectional 
tolerances or longitudinal ones? Some kind of estimate can be calculated with the 
formula for manufacturing tolerance in [16]. The size of "global" imperfection obtained 
from it is about two wall thicknesses in these cases. The Finnish . standard for cold­
rolled steel sections [12] gives as a maximum allowable rotation of the section 1 
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degree/m. Actually the initial imperfections should also include some kind of equivalent 
value of the internal imprefections, which cannot otherwise be modelled (e.g. residual 
stresses). 

As an example the specimen C2flv1R3 is analyzed with different imperfection sizes in 
figure 8. The shape of imperfection used is the first buckling mode (figure 7). The 
imperfection size is notified with respect to the wall thickness of the section and as the 
rotation angle of the middle cross-section, which describes the imperfection size bener. 
In these analyses, the ideally elastic-plastic material model is used. Without any 
imperfection the strength of the model is 122 kN. Figure 9 shows deformed shapes of 
models at the end of analysis with no imperfection and with lateral buckling 
imperfection. Displacements in the figure are of the actual size. 

4 RESULTS A~D COMPARISON 

Models were analyzed with the ABAQUS program using the modified Riles method 
[ 10], which is also capable of analyzing the post-buckling range. In the analyses, that 
model cross-sectional bending tests, loading is restricted to 15 steps. In lateral buckling 
analyses 20 steps are used. These analyses were carried out in the Cray X-MP 
supercomputer. Analyses of cross-sectional bending strength took from 10 to 20 minutes 
CPU-time when symmetry conditions were utilized. In lateral buckling analyses models 
were significantly larger. These analyses took from one to one and a half hours of 
CPU-time. 

When cross-sectional bending strength was determined no additional imperfection is in 
this case needed. In figures 10, 11, and 12 three different cases, C2/MR1, Clflv1R1 and 
H1flv{R2, are compared. The loading itself causes the disturbance, as can be seen from 
the lateral displacements and cross-sectional distortions shown in figures 10, 11 and 12. 
The material model used was the ideally elastic-plastic material model described earlier. 
The symmetry conditions were used in the analyses and only a half of the beam was 
modelled. The comparisons of strengths are given in table 4. 

In the analysis of lateral buckling strength, the buckling analysis was performed to 
determine the shape of initial imperfection. In all four cases the first buckling mode 
shows lateral buckling [ 11 ]. These modes are used as the shape of imperfection in the 
non-linear analysis. The material model was the ideally elastic-plastic model explained 
before. Figures 13 and 14 show the displacements of beams C2 and Hl. In the lateral 
buckling tests, the lateral displacement and rotation of the cross-section are compared 
Compared strengths like the displacements in figures 13 and 14 are calculated with an 
imperfection size of two wall thicknesses. The case C1 was the exception not showing 
rotation of cross-section in the test This case was analysed without any imperfection 
and the strength of the model was of the same magnitude with an imperfection of one 
wall thickness. Results are given in table 5. 
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5 CONCLUSIONS 

Cross-sectional bending strength can be detennined with a rather simple model; the ideal 
elastic-plastic material model with no imperfection gives a precision of 12 percent in the 
accuracy of strength predictions. With those specimens where the difference was over 
10 percent, local crushing was observed in the tests. The rather large comer radius was 
not modelled. 

Non-symmetrical imperfection is needed in the lateral buckling analyses. The shape of 
imperfection may be detennined by buckling analysis. When the size of imperfection 
is two wall thicknesses the lateral buckling strength of the model of the beam compared 
to the tested beam is overestimated by as much as 12 percent. The decision concerning 
imperfection size in the non-linear analysis needs funher discussion. 

Computational costs with these kinds of models are rather large, but the development 
in computer calculation capacity has been so vast, that soon even lateral buckling 
analyses can be perfonned in personal computers. 
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Table 1. 

Cross- t a b c r 

section [mm] [mm] [mm] [mm] [mm] 

C1 3,96 200,2 79,4 25,6 3,9 

C2 4,93 129,9 129,3 23,3 1,9 

H1 5,95 152,0 150,4 36,0 8,6 

H2 5,95 132,1 130,1 58,3 8,4 

c c 

_!_r p It n 
' • ,-----' 

b b 

/ 1/ 
! a a 

Figure 3. 

Table 2. 

Specimen L1 L2 L3 F Failure 

[mm] [mm] [mm] [kN] mode 

C1/MR1 500 1000 1500 71,5 P+S 

C1/MR2 500 1000 1500 76 ,0 p 

C1/MR3 4000 4500 5000 57,0 P+S 

C2/MR1 500 1000 1500 158,0 P+S 

C2/MR2 500 1000 1500 195,0 P+L 

C2/MR3 4000 4500 5000 84,5 T+S 

H1/MR1 1000 2000 2500 141,5 P+S 

H1/MR2 1000 2000 2500 185,0 P+L 

H1/MR3 4000 5000 6000 71,0 T 

H2/MR1 1000 2000 2500 142,0 P+S 

H2/MR2 1000 2000 2500 163,5 P+L 

H2/MR3 4000 5000 6000 59,0 T 
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Figure 6. 

Table 3. 

Specimen 
Rel ReH 

[MPa] [MPa] 

C1/MR1 555 557 

C1/MR2 546 556 

C11MR3 546 559 

C2/MR1 556 571 

C2/MR2 556 571 

C2/MR3 549 559 

62 

E = 210 GPa 
V = 0,3 

Specimen 

H1/MR1 

H1/MR2 

H1/MR3 

H2/MR1 

H2/MR2 

H2/MR3 

Rel ReH 

[MPa] [MPa] 

664 671 

660 

660 

652 666 

623 632 

623 632 



Figure 7. (a) C21MR3 and (b) Hl !MR3 
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Figure 9. (a) No imperfection and (b) with imperfection 
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Table 4. Cross-sectional bending strength 

Specimen F[kNJ F [kN] FEM 

FEM Test Test 

MR1 C1 65 71,5 0,91 

C2 152 158,0 0,96 

H1 158 141,5 1 '12 

H2 157 142,0 1 '11 

MR2 C1 75 76,0 0,99 

C2 188 195,0 0,96 

H1 190 185,0 1,03 

H2 164 163,5 1,00 

Table 5. Lateral buckling strength 

Imperfection F [kN] F [kN] FEM 

FEM Test Test 

C1 57 57,0 1,00 

1 00 % t ( 1 . 7°) 58 

200% t (3.5°) 55 

C2 122 

50% t (0.6°) 111 

100% t (1.3°) 107 

200 % t (2.5°) 95 84,5 1 '12 

H1 1 00 % t ( 1.5°) 83 

200 % t {2.9°) 79 71,0 1 '11 

H2 100% t (1.J<l} 72 

200 % t (3.5°} 66 59,0 1,12 

67 


