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The per pl ex ing result that und a mp e d pipes aspirating fluid are 

inhere ntly unstable, i.e. they lose their stability at infinitely 

small floH velocity is reconsidered. It is shmm that slight changes 

in the assumptions on the flo1v direction just before t h e inlet - the 

free end of the pipe - cause essentia l differences to the stability 

b e h aviour. For example, if the flmv is assume d to be along the 

undeformed axis of the pip e just outside the free end, pipes 

aspirat ing and discharging fluid have the same crit i cal velocity Hhich 

is nonzero even Hhen there is no damping. 
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INTRODUCTION 

The literature on vibration and stability of pipe s conveying fluid is 

quite extensive, vide, the references of Paidoussis (1987). The 

problem has received its share of attention mainly becaus e of its 

special significance in the context of stability theory of 

nonconservative systems. Namely, the flow velocity necessary to cause 

flutter in a cantilevered pipe is so high that it is unlikely to be 

encountered in usual engineering practice. The phenomenon itself 

belongs, however, to everyday life . The large latera l force that must 

be exerted by one holding a fire-hose at high discharge rate, i s lvell 

known as is the snaking motion of a garden hos e if held at some 

distance from the free end. 

In a lmost all studies the flow has been from the fixed end towards the 

free one. The first paper dealing with the dynamic stability of a pipe 

aspirating fluid was the one of Paidoussis&Luu (1985). They obtained 

the rather unexpected result that the system is inhere ntly unstable, 

i.e . it loses its stability at infinitely small velocity if there is 

no damping present . Similar results were later obtained by 

Pramila&al. (1988) using the FEM and employing the same basic 

assumptions concerning the fluid fl01v. 

Dupuis&Rousselet (1991) commented recently on the same result obtained 

by Salls tram (1990) by using the so called exact finite elements . In 

0 
their authors' reply Sallstrom&Akesson (1991) mention that they are 
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unaware of physical experiments verifying the abovementioned 

phenomenon. This and the fact that pipes aspirating fluid have been 

successfully used in the practice since the time inunemorial, has led 

to the following considerations. 

He lvill show that the stability behaviour of the system depends very 

much on the assumptions made concern ing t he fluid flow at the free 

end. All the derivat ions are first made for the classica l problem, 

1·1here t h e pipe is discharging fluid, in order to keep the text as 

assimilable as possible. 

ENERGY FLO\o/ FROM FLUID TO PIPE 

Consider a straight cantilever pipe of length L, mass per unit length 

mp, bending stiffness EI, discharging fluid, mass per unit l ength mf, 

tangentially from its free end \vith axial velocity U. The case in 

which the pipe is aspirating fluid is obtained from this case simply 

by letting U be negative. 

It has been sh01m by Paidoussis (1970) that the net energy received by 

the pipe from the fluid during one vibration cyc le is 

lo/=- f mfU(w2+u,.,•,~) lx=L dt. 

0 

(1) 

where w denotes the transverse deflection and a prime indicates 

differentiation with respect to the spatial co-ordinate x and a dot 

indicates differentiation with respect to time. This expression is 
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valid provided that the shear force Q at the free end equals to zero, 

i.e. the fluid leaves the pipe tangentially. Hence, the boundary 

conditions at the free end are w' '-0 and w' ''-0. 

If the velocity is small the first term in the integrand dominates 

and I~ is negative. Thus the motion of the pipe will be damped. 

However, when the velocity becomes greater and if the product w·~lx-L is 

negative over most part of the vibration cycle, W may become positive, 

i.e. pipe is gaining energy from the fluid flow. Hence the pipe may 

become dynamically unstable and lose its stability by flutter. 

lfuen U is negative, I~ is positive even with infinitesimally small 

velocities and thus flutter instability occurs. 

The flow field can be entirely different at the free end depending on 

if the pipe is discharging fluid or aspirating fluid, see e.g . 

Batchelor (1967). The fluid which is forced out of the pipe usually 

emerges as a concentrated tangential jet. The flow due to suction at 

the open end of the pipe is approximately the same as the flow due to 

a point sink. The streamlines can in this case be like in Figure la or 

in Figure lb depending on the location of the sucking end, close to 

the free surface or deeply in the fluid. An everyday experience 

confirms this qualitative difference: a match can be extinguished by 

blowing, but not by sucking. 

In the case depicted in Figure la 1~e can assume that the fluid just 

entering the pipe has a momentum vector which is vertical. The 
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transverse component is equal to zero, because the flow field is 

axisymmetric. In the case of Figure lb the flow field has spherical 

symmetry and therefore the momentum of the fluid just entering the 

pipe can be assumed equal to zero. Here the inertia effect of 

surrounding fluid is taken into account by substituting mp+ma for mp, 

rna being the added mass per unit length. Of course, the situations 

described above are approximate. In reality, the motion of the pipe 

disturbs the flow field and makes it very complicated. 

According to the principle of impulse and momentum the flow exerts a 

transverse force 

(2) 

to the end of the pipe, if the velocity of the fluid changes from being 

tangential in the pipe to being in x -di rection just outside the free 

end of the pipe, see Figure 2. This could require controllable vanes 

in a case of a pipe discharging fluid, but corresponds quite we ll the 

situation of Figure la in a case of a pipe aspirat ing fluid . 

If the fluid velocity in x-direction is also equal to zero at the free 

end (corresponding to Figure lb in suction case) we obtain in addition 

to the transverse force also a longitudinal force 

(3) 

causing tension to the system consisting of the pipe and the fluid. In 
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pipes discharging fluid this kind of situation arises, e.g. if the 

free end is closed and fluid is forced out through holes drilled 

circumferentially around the perimeter of the pipe. 

In the case of Figure 2 the work done by the force Fz to the pipe 

during one cycle of vibration is 

\~F= JTmfU(1~+U1v' )l~ l x=L 
0 

dt . (4) 

Thus, the total energy gained by the pipe during one period of 

oscillation, \H\~F• according to equations (1) and (4). equals zero! 

This means that the problem is a conservative one and the system can 

lose its stability only by divergence. If the effect of gravity and 

damping are neglected for simplicity, the traditional equation of 

motion 

(5) 

is obtained. However, the boundary conditions at the free end are now 

w' ' =0 and Because divergence is a static 

instability mechanism equation (5) can no1v be simplified for stability 

studies by dropping the terms containing time derivatives, i.e. 1ve 

obtain 

(6) 
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from which we can immediately deduce (compare (6) with the buckling 

equation) the critical velocity to be 

(7) 

which is independent from mass ratio and sign of U, i.e. the critical 

velocity for a pipe discharging fluid and aspirating fluid are equal. 

It is also considerably smaller than the critical velocity obtained 

using the traditional flow model assuming tangential discharge. This 

is natural, because the transverse force tries to increase the 

deflection , vide Figure 2. 

If the system is assumed to be of the type depicted in Figure lb, the 

system cannot loose stability with any velocity. because velocity 

disappears from the terms not containing time derivatives of lv in the 

equation of motion, because axial tension given in Equation (3) adds a 

term -mfu2w• ' to the equation of motion (5). 

EXTENDED HAMILTON'S PRINCIPLE AND FLOH ASSUMPTIONS 

The extended Hamilton• s principle, see Mciver (1973), states that the 

motion of the system is such that 

t2 
.sf (T-V) 

tl 

t2 
dt+J f pU · tir(u-U) ·n dS dt=O 

tl so 
( 8) 



where T and V are the kinetic and potential energies of the pipe plus 

fluid therein, p is the density of the medium flowing throughout the 

open boundary S0 , U is the velocity vector of the fluid, or is the 

virtual displacement, u is the velocity vector of the boundary and n 

is the unit outward normal vector of the boundary. 

\llien the traditional assumption of tangential flow at the fre e end is 

made, the last integral simplifies to 

( 9) 

leading to natural boundary conditions w' '=w'' '=0 at the free end . 

\llien small deflections are assumed or =owk and velocity vector U at 

the outlet is now assumed to be along the x-axis, i.e. U = Ui, or and 

U are perpendicular to each other and thus the last term in equation 

(8) disappears . Thus, the stability behaviour obtained using the 

extended Hamilton's principle as a starting point leads to the same 

conclusion obtained using energy considerations, because it yields the 

same equation of motion (5) and same boundary conditions lv' ' =0 and 

\llien the extended version (8) of Hamilton's principle is employed as 

the basis for the FEM discretisation, the last integral causes an 

additional term to the gyroscopic matrix G and to the stiffness 

matrix K in the system of equations of motion 

10 



Ka+Ga+Ka~O (10) 

making both of them unsymmetric. However, when the assumption is made 

that the flow just outside t he end of the pipe is along the undeformed 

axis, G remains skev1-symmetric and K remains symmetric. l.fuen these 

changes were made to the computer program system described by 

Kangaspuoskari&al. (1991) the numerical results agreed v1ell \vith the 

analytical one given in equation (7). 

CONCLUSIONS 

The perplexing resu l t t hat undamped cantilevered pipes aspirating 

fluid are inherently unstable, i.e. they lose their stability at 

infinitely smal l flow velocity has been reconsidered. It has been 

shown that slight differences in the simplifying assumptions on the 

flow direction at the free end lead to significantly different 

stability behaviour . If it is assumed that the flow entering (leaving) 

the pipe is along the undeformed ax is of the pipe just prior to the 

inlet(just after the outlet), the critical velocity is nonzero and 

finite. IHth this assumption the cr itical velocity of pipe aspirating 

fluid and discharging fluid become the same. If the resultant momentum 

of the fluid is zero at the free end (flow field is spherically 

symmetric for a pipe aspirating fluid or fluid is discharged radially 

from a pipe having a closed end) , the crit i ca l veloc ity is infinitely 

large. Hmvever, the actual flow field around the inlet of fluid 

aspirating pipe is very complex. Therefore, further studies are 
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needed to clarify the detailed stability behaviour of these kind of 

systems which represent idealizations of e.g. marine risers. 
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Figur e 1 . Str eamlines of the f luid suc ked by the pipe . 
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Figure 2 . Transverse force caused by the change of flow direction. 
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