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The calculation method described in ref. Toratti (1991) is used here to model the 

creep of structural size timber beams in natural outdoor humidity conditions. 

The constitutive models of wood were determined from test results of small 

sized specimens. These models are used here in an analysis to determine the 

creep of a structural size beam. The main principle in the computation is that 

only a single cross section of the beam is analysed. The analysis is thus two 

dimensional. In every time step the cross section moisture distribution is 

computed by the finite difference method using an explicit scheme. The 

moisture distribution results are then used to calculate the creep cumulated 

during this time step using a trapezoidal scheme. The axial strain of the cross 

section is computed iteratively until the internal stresses are in equilibrium with 

the external loads and the compatibility requirement of linear strain 

distribution are satisfied. The calculation method is used to model 10 year and 

50 year creep behaviour of timber and glulam beams. 

MOISTURE TRANSFER- CREEP ANALYSIS 

The computation method of the analysis is based on the finite difference 

method to compute the transient moisture and on the 'method of successive 

approximations' the stress and strain distributions. These numerical methods 

have been introduced in early literature (Patankar 1980; Mendelson & 

Hirschberg & Manson 1959). Both of these numerical methods have been used 

before in a number of studies. In this study, these two numerical methods are 

combined. This is particularly important in the study of the long term 

behaviour of wood, since for wood the deformations under sustained loads 

have been found to be very sensitive to moisture content changes. 
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The input required to define the material behaviour in the analysis consists of 

material parameters involved in moisture transfer as well as parameters 

involved in the constitutive relations. The input needed for the moisture 

transfer analysis are the sorption isotherm, diffusion coefficient and surface 

resistance. The constitutive equations include a moisture content dependent 

elastic modulus a basic creep model and a mechano-sorptive creep models and 

a shrinkage coefficient parallel to grain. The problem-dependant inputs are the 

cross section size, the loading and the relative humidity of the surrounding air 

as a function of time. 

MOISTURE TRANSFER PROPERTIES 

The moisture technical parameters used in the finite difference analysis of 

moisture distribution were determined based on a literature survey (Toratti 

1991). The following were used (moisture content of wood [kg/m3] as 

potential): 

Diffusion coefficient: D(u) = 1.0 x 10-10 exp(2.28 u) (m2/s] (1) 
Surface emissivity: S = 0.5 x 10-7 [m/ s] 
Sorption isotherm: u = 0.01 RH I (-0.000928 RH2 + 0.12545 RH + 0.33467) [-] 

where RH is the relative humidity of air[%] 
u is moisture content[-] 

The above relations and parameter values were determined based on a 

literature survey and on preliminary experiments carried out by the author. 

DEFORMATION ANALYSIS AND MATERIAL PROPERTIES 

The constitutive model and material parameters introduced in the following 

have been determined from previous creep tests of clear wood in bending 

(Toratti 1991; Mohager & Toratti). The constitutive equation of wood is 

assumed to be linear with respect to stress. The strain of wood when subjected 

to sustained loading and moisture content variation is assumed to consist of the 

following additive parts: elastic eE , normal creep Cvisk , mechano-sorptive creep 

ems and free shrinkage strains Eu, eq.(2) 
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t(t) = €E + Cvisk + Sns + Cu (2) 

The deformations are calculated only parallel to grain. A linear strain 

distribution, Bernoulli hypothesis, over the cross section is assumed: 

e(x,y) = au;az- y {12m/<1z2 (3) 

Where: u is displacement in z (grain) direction 
m is displacement in y direction (height direction) 

The strain increment at each node during the current time step is composed of: 

Where: i1€E is the elastic strain increment 
l1fvisk is the normal creep strain increment 
.:1€,5 is the mechano-sorptive creep strain increment 
i1E:u is the shrinkage stram increment 

Elastic strain increment 

(4) 

The elastic strain depends on the elastic modulus and its dependence on 

moisture content. The following values were used here: 

where E0(u) = (J0(u))-1 = 14000(1 - 1.06 u) [MPa] 
u: moisture content[-] 

(5) 

The elastic strain increment can be given as: 

Where 

(6) 

Jo is the elastic compliance 
Mo is the increment of elastic compliance due to the moisture 
content dependence of the elastic modulus 

Normal creep strain increment 

The normal creep function is given in a Kelvin series form which consists of six 
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(n=6) Kelvin elements having retardation times of 0.01, 0.1, 1, 10, 100,5000 days. 

Normal creep in the convolution integral form is then as: 

t 

tvisk = JoCuref) f {I: Jn(l - exp(-(t-t')i'tn)) dO'/dt'} dt', 
0 

where }1 = 0.0676 [-] 't1 = 0.01 [days] 
h = -0.0018 [-] 't2 = 0.1 [days] 
h = 0.0626 [-] 't:3 = 1 [days] 
}4 = 0.0683 [-] 't4 = 10 [days] 
J5 = 0.1427[-] 't5 =100 [days] 
}6 = 0.8373 [-] 't6 = 5000 [days] 
Uref = 0.2 [-) 
cr: stress [MPa] 
t : time [days] 

(7) 

The strain increment at each time step is then calculated using the trapezoidal 

rule from (Thelandersson 1987): 

(8) 

Where then stress history terms, crnhist, are updated after each time step: 

(9) 

Mechano-sorptive creep strain increment 

The mechano-sorptive creep limit concept as well as the shrinkage strain model 

eq.(14) have originally been proposed by Hunt & Shelton (1988). The creep limit 

model can be formulated in a constant stress as eq.(lO) and this defines that 

mechano-sorptive creep approaches a limit value as moisture increments are 

introduced. 

!Om5(t) = }00 {1 - exp(-c (I: l~ul))} 0' (10) 

Recent creep test results under long term loading and subjected to many 

relative humidity cycles (Mohager & Toratti 1991) did not follow the creep limit 

model. The deformation was found to increase during subsequent humidity 

cycles without reaching a limit value. The increment of deformation during a 

humidity cycle was highest during the first cycles and decreased during the 
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following cycles, but the increment did not show a tendency to vanish. The 

creep limit model was thus slightly changed to account for this observed 

behaviour in the following equations. 

The mechano-sorptive model and parameter values derived from previous tests 

are used without altering the material parameters values. It was assumed that 

for tension stress the creep approaches a limit value and the creep limit model 

is used. For compression stress the model is a combination of the creep limit 

and the linear model. This linear part is assumed to be due to losses of stability 

of the microfibrils under compression resulting in the formation of slip planes. 

In addition it is assumed that this linear part of the mechano-sorptive strain is 

irrecoverable as all other mechano-sorptive and normal creep strain is fully 

recoverable under changing humidity conditions when unloaded. 

For tension stress: 

t t f 
tn,5(t) = JooJ {1- exp(-c (:E l~ui-. :E l~ul))} dcr(t'), (11) 

0 0 0 

For compression stress: 

t t t' t 
tn,5(t) = JooJ {1 - exp(-c (:E l~ul - :E l~ul))} dcr(t') + Jo(uref) e J cr(t') ldu(t')l, (12) 

0 0 0 0 

where Joo = 0.7 Jo(Uref) 
c = 2.5 [-] 
e = 0.1 [-] 

A trapezoidal rule to integrate the mechano-sorptive deformation is used. The 

mechano-sorptive creep is incremented at each time step by eq.(13) if the sign of 

stress is negative. For positive sign stress the last term on eq.(13) is left out. The 

Boltzmann superposition principle is assumed valid for normal as well as for 

mechano-sorptive creep, with the provision that the last term in eq.(12) and 

eq.(13) is irrecoverable. 
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1s updatea alter each time step. 
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The free shrinkage of wood parallel to grain is assumed to be dependent on the 

strain of wood, as in eq.(14). Wood then shrinks and swells more in a state of 

compression strain and less in a state of tension strain than when not loaded. 

This results in the oscillation of the creep curve in bending when subjected to 

cyclic humidity conditions. 

Eo = {a - b E(t)} ~u , 

where b = 1.3 [-] 
a : shrinkage coefficient parallel to grain 
~u : Moisture content increment. 

(14) 

To account for variable loading and creep recovery the Boltzman superposition 

principle is applied. Mechano-sorptive effects are also known to increase the 

rate of recovery of deformation when unloading. 

ANALYSIS RESULTS 

Eq.(4) is rearranged to determine the elastic strain increment at each node: 

(15) 

Using eq.(3) and eq.(6) the stress increment at each node during the current 

time step can be derived from: 

The strain distribution increments are computed iteratively: 

Increment of axial strain: 

L1dul dz = {N - Li (cri + ~cr) ai} I {11 ai Ei(u)} 

Increment of curvature: 

~d2rol dz2 = {M- Li (cri + ~cr) (yi - Yo) aJ I 
{11 (yi - Yo)2 ai Ei(u)} 

(17) 

(18) 
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Until the section forces are in equilibrium with the external loads: 

~ ( O"; + l'.a; ) a; = N (19) 

(20) 

The force criteria for the convergence of the iterations was chosen. This is based 

on the equilibrium of the internal stresses to the external loads, as in eq.(19) and 

eq.(20). The convergence is fulfilled when the following inequalities hold: 

(21) 

(22) 

When the equilibrium of forces convergence, the new strain values and the 

deflection of a beam loaded with a constant moment are: 

(23) 

(24) 

Where: u is displacement in z (grain) direction 
w is displacement in y direction (height direction) 

The value of the time step is chosen in a way that the stability of the 

computations is ensured. The computations performed to each node of the 

cross section follows the algorithm below: 
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1. Compute the moisture content distribution over the cross section. 

2. Update material properties according to moisture content 
distribution. 

3. Compute stress distribution. 
-Initially (t=O) according to elastic theory. 
- First iteration values from previous time step. 

4. Compute strain increment at the nodes during the elapsed time 
step usmg current stress distribution and moisture content 
increment. 



5. Calculate stress increment at each node during the elapsed time 
step. Re~urn to. 3 and re-estimate the strain increments, until stress 
ana stram are m agreement. 

6. Compute section forces using the stress distribution and compare 
if they match with the external loads N, M. If precision or 
convergence requirements are not satisfied return to 3. and adjust the 
strain distribution according to the difference of the internal and 
external loads considering current stiffness of the cross section. 

7. Program output for current time: 
-Strain distribution £(x,y) 
- Deflection from the curvature of a beam 
-Stress distribution from given sections a(x,y). 

8. Proceed to next time step adding a time increment and return to 1. 

The output from the analysis consists of moisture content, u(x,y), strain, £(x,y), 

and stress, a(x,y), distributions over the cross section at every time step. The 

strain and stress distributions are directed parallel to grain or normal to the 

cross section plane. The curvature values derived from the strain distributions 

are used to compute the creep of a beam loaded with a constant moment over a 

defined span. 

STUDIED CASES 

The analysis is used here to model the creep of timber beams, which are 

subjected to an outdoor relative humidity environment and to different 

loadings using several snow load- permanent load ratios. The bending creep of 

two different size beams are studied: a cross section of 50 x 200 mm2 (solid 

timber) and a cross section of 140 x 900 mm2 (glulam). The number of nodes 

used in the analysis to represent the cross sections were 9 x 13 and 17 x 39 nodes 

respectively. 

Relative Humidity input 

The relative humidity of the environment was taken from a database of the 

monthly mean relative humidity values outdoors for the five year period 1963-

1967 in the Helsinki area, Finland. During this period the relative humidity 

varied between the extreme values of RH 55% and RH 92 %, fig 1. Very similar 
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1-- Helsinki Kaisaniemi -- Helsinki lentoasema I 

Fig. 1 Monthly mean air relative humidity from two weather stations 

during the years 1963- 1967. The values registered from the airport 

weather station (lentoasema) were used as input to the analysis. 
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yearly variability of the outdoor relative humidity has been reported by 

Tsoumis (1964) for different locations in northern and central Europe. The 

humidity conditions in inhabited (heated) buildings cycle in an opposite phase, 

but the amplitude of the cycling is quite close to that of the outdoor air, 

(Thelandersson 1990). The relative humidity input used may thus represent the 

conditions in many locations. 

The creep was computed for a period of ten years and for a period of SO years 

using this relative humidity data of five years consecutively over the studied 

period. 

Load input 

The loads used in the analysis consist of a dead load and a snow load. Four 

different snow load - dead load ratios were considered, these were load case A: 

80% - 20 %, load case B: SO% - 50%, load case C: 20% - 80% and load case D: 0% -

100% respectively. 

The duration of the dead load is considered permanent. The duration of the 

snow load is expressed by the excursion time of the ground snow depth. The 

excursion time {T) [years per year]} is the time when the magnitude of snow 

depth (snow load) is above a certain level. The excursion time does not give the 

true snow depth variation during the year, but defines the total time during the 

year that the snow load is above a certain level. In Forsler & al. (197S) excursion 

times of different snow depths in different parts of Sweden were reported. It is 

observed that the excursion time curve is slightly concave extending from the 

maximum snow depth value to a zero value. This curve can be quite 

satisfactorily defined by a straight line being on the safe side. The slope of this 

imaginary line was observed to have a constant slope of about 2 [m/ (years per 

year)] regardless of the geographical position or ultimate snow depth. 

The snow load in the analysis was thus taken as a yearly symmetric triangular 

load having a constant slope of 1 [m/(years per year)] regardless of the 

maximum load value. In all the studied cases, the maximum load is assumed to 

correspond a bending stress of 10 MPa. The magnitude of the maximum load 

(and the corresponding bending stress) specifies the relative creep value. The 

elastic deflection of the beam when subjected to the maximum load is defined 
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as a relative creep value of one and the computed creep is related to this 

deflection value. It is thus assumed that the beam is designed to this maximum 

load and the creep factors should then be relative to this calculated elastic 

deflection. 

According to ISO CW 4355 the characteristic snow design load should be taken 

as the load value with a return period of 50 years. However, in modelling the 

creep of wood it is highly improbable that the maximum snow load is at this 

magnitude every year. The maximum snow load is random by nature and 

should be thus treated by a probabilistic basis. For this reason a simulation was 

carried out on the snow load portion of the total load. 

Table 1. Five year and ten year return period snow depth values relative to 

the 50 year return period value. Ref: Forsler & al., 1975 (Snow depths, 

observations of 40 to 84 years); Katajisto, 1966 (water-equivalents, 

Observations of 30 to 37 years). 

Location of observation Relative values between return periods of: 

Sweden: 

Lund 

Linkoping 

Falun 

Umea 

Ostersund 

Jokkmokk 

Finland: 

Helsinki 

Lohtaja 

Pie lis jiirvi 

50 year I 5 year 

1.87 

1.74 

1.61 

1.50 

1.64 

1.53 

1.59 

1.72 

1.45 

50 year I 10 year 

1.43 

1.43 

1.36 

1.27 

1.38 

1.33 

1.35 

1.41 

1.27 

Observations of the ground snow depth in Sweden (Forsler & al., 1975) and in 

Finland (Katajisto, 1966). The ultimate snow depth relative to the 50 year return 

period value is of interest. Table 1 summarizes the ultimate snow depth values 

22 



as relations of the 50 year I 10 year and the 50 year I 5 year return period values. 

The relative snow depth values above can be classified into maritime climates 

of lower average snow depths having higher relative values and to continental 

climates of higher snow depths having lower relative values. Otherwise these 

values are fairly close to each other. The simulation was carried out using the 

snow depth values of Umea because of the large database of this location 

extending over 84 years, (Actions on structures, Snow loads CIB W81). The 

snow depth values for the modelled 10 years and 50 years were randomly 

chosen from the cumulative Gamma distribution function. The snow load 

values of a ten year simulation is presented in fig. 3 as relative values to the 

characteristic value with a return period of 50 years. A separate simulation of 

snow depths over 50 years is presented in fig.4. 

Two separate sets of computations were carried out to model10 year creep with 

the described snow load - permanent load ratios. One set using the maximum 

snow load value of the 50 year return period for every year and one set using 

the simulated maximum snow loads for the ten years (fig 3.) as described 

above. The duration of the load is taken as described in fig. 2., load cases A,B,C 

and D. 

The 50 year creep was modelled with the simulated snow loads using a load 

cases A and B as well as a load case with only the simulated snow loads 

(without a permanent load component) and a load case with only a permanent 

load (load case D, no snow load component). 

COMPUTED RESULTS 

The computed results in the following are presented as relative creep values, 

which is the creep divided by the elastic deflection when the maximum load, 

corresponding to a bending stress of 10 MPa, is applied. 

Ten year creep: case of only a permanent load 

The ten year loading (long term load) resulted in relative creep values of about 

2.7 for the timber beam and 2.5 for the glulam beam when only the maximum 
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Fig.2 Four different loading cases used in the analysis. From top to bottom 

load cases A, B, C and D. 
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Fig.3 Simulated yearly maximum snow load values for a 10 year period 

relative to the 50 year return period snow load value. 
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Year 

Fig.4 Simulated yearly maximum snow load values for a 50 year period 

relative to the 50 year return period snow load value. 



constant load is applied. The relative creep at six months of loading (medium 

term load) was about 1.5 for the timber beam and about 1.25 for the glulam 

beam. 

Ten year creep: case of using the 50 year return period snow load value 

The existence of the snow loads considerably decreases the magnitude of creep. 

This is so because the reference deflection to which the creep is related is the 

deflection value when maximum load is applied and in the case of snow loads 

this maximum load is present only for a short period of time once a year. The 

ratio of snow load - dead load did not effect very much the ultimate creep 

values. 

When snow loads are taken as the 50 year return period value for every year the 

relative creep value at an instant when the maximum load is present after ten 

years of loading was between 2.0- 2.2 for the glulam beam and about 2.3 for the 

timber beam, fig.5 and fig.6. When the snow load is not present these relative 

deformation values are much lower depending on the magnitude of the 

permanent load. These creep values can be considered as the upper limit 

values, since it is unlikely that the snow load is at this magnitude annually for 

ten consecutive years. 

Ten year creep: case of using the simulated snow load values 

When the simulated snow load values are used, which were considerably lower 

than the 50 year return period value, the computed creep is lower than in the 

above case. This difference is higher the higher the snow load portion of the 

total load, although the ratio of snow load to permanent load did not have a 

very significant effect on the ultimate relative creep value during the studied 

ten year period. 

For load cases A and B (snow loads 80% and 50 % of total load) the relative 

creep reaches a maximum value of about 2.0 for the timber beam and about 1.7 

for the glulam beam. This value occurred during the eighth year when the snow 

load was quite close to the 50 year period return value. 
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Computed creep w ith 50 year return period snow loads, load cases D, C, B, A 
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Fig.S Computed creep for 10 years of the 50 x 200 mm2 beam using the 

four different loading cases (snow load - permanent load ratios). Above: 

using the 50 year return period snow load value as the maximum snow 

load value for every year. Below: using the simulated maximum snow 

load values (as in fig .3). 



Computed creep with 50 year return period snow loads, load cases D, C. B, A 

and average moisture content curve 
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Fig.6 Computed creep for 10 years of the 140 x 900 mm2 beam using the 

four different loading cases (snow load- permanent load ratios). Above: 

using the 50 year return period snow load value as the maximum snow 

load value for every year. Below: using the simulated maximum snow 

load values (as in fig.3) . 
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Fifty year creep 

The results of the 50 year creep are given in fig.7 for the timber beam and fig.8 

for the glulam beam. In case of only a permanent load (load case D) there is not 

very much difference on the computed creep for the timber and the glulam 

beams, but in the load case of only snow loads the smaller size timber beam 

resulted in higher creep. This can also be seen from the results of load cases A 

and B, where the creep of timber beam seems to be independent of the snow 

load ratio. For the glulam beam there is difference in creep between load cases 

A and B. 

DISCUSSION 

According to the Eurocode draft 5 'if a load combination consists of actions 

belonging to different load-duration classes the deflection should be calculated 

separately for the different actions with the appropriate creep factors'. In the 

computations carried out snow loads and permanent loads were considered. 

These are classified according to their duration to medium term and permanent 

actions respectively. From the computed results where the load cases of a 

permanent load and a snow load were considered separately, deformation 

factors presented in table 2 were derived. These factors give about the same 

creep values when compared to the other load cases considered where both 

permanent and snow loads were present. 
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Computed creep for 50 years loading, load case of only a permanent load 

and a load case of only the simulated snow loads 
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Fig.7 Computed creep for 50 years of the 50 x 200 rnrn2 beam using several 

loading cases (snow load - permanent load ratios). Above: using only a 

permanent load and only a simulated maximum snow load. Below: using 

load cases A (80% snow load) and B (50% snow load) with simulated 

maximum snow load values (as in fig.4). 

31 



32 

Computed creep for 50 years loading, load case of only a permanent load 

and a load case of only the simulated snow loads 
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Fig.8 Computed creep for 50 years of the 140 x 900 mm2 beam using 

several loading cases (snow load- permanent load ratios). Above: using 

only a permanent load and only a simulated snow load. Below: using load 

cases A (80% snow load) and B (50% snow load) with simulated maximum 

snow load values (as in fig.4). 



Table 2. The values of kdef for solid timber and glulam. Derived from fig. 7 
and 8 where the load cases of a permanent load and a snow load were 

considered separately. {Relative creep : 1 + kderl 

Timber: 

Medium term load 

Permanent load 

Glulam: 

Medium term load 

Permanent load 

10 year creep 

0.5 

1.7 

0.4 

1.5 

Summary of main assumptions of the model 

50 year creep 

1.9 

2.5 

0.8 

2.2 

The definition of solid timber and glulam is here only specified by the member 

size. The chosen sizes were assumed to represent the respective material. The 

material properties were assumed to be the same. 

The relative humidity input was given as the monthly average value. It is 

assumed that humidity cycles of shorter wave length does not significantly 

effect the moisture content of the member. The validity of this assumption is 

governed by the surface emissivity value of moisture transfer, which is a 

parameter not well known. 

In the simulation of the snow load, only the yearly maximum snow load value 

was simulated. The duration of the load is relative to this load value and was 

assumed symmetric and triangular. 

It is assumed that the material models as well as the material parameters are 

valid up to the studied structure lifetime of 50 years. It is possible that these 

models or respective parameters change as a result of ageing of the wood, but 

since such knowledge is not available, it is relied on the behaviour observed 

from test results. 
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There are some unsolved questions regarding the creep of wood which might 

also alter the model presented here. One of these is the effect of temperature 

and changes of temperature on creep. The experiments, from which the model 

was derived, were carried out in constant room temperature and the model 

used in the analysis does not account for changes in temperature. The 

modelling of moisture transfer in wood in natural humidity conditions is not 

well known. Diffusion and surface emmissivity coefficient values given in 

literature are well scattered from source to source and their dependencies on 

temperature, air velocity or on the aging of wood is not known. 
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