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The problem of determining the law of controlling the non-contact 
suspension for a gyroscopic rotor ensuring minimization of the integral 
quadratic deviation in transient processes with the least expenditure of 
force resources is solved. 

Controlled non-contact rotor suspensions provided by electromagnetic 

forces are used in various branches of modern engineering on a wider 

scale [1, 2]. The suspension control should be provided so that the required 

quality of transient processes be ensured with the least expenditure of the 
force resources. The problems of optimal one-dimensional suspension 

control were considered, for example, in [3,4]. In the given paper the 

problem of optimal multi-dimensional suspension control of a gyroscopic 

rotor is solved. 

A balanced rigid rotor having mass M, equatorial J 1 and axial J 3 

moments of inertia and rotating in suspension at the constant frequency OJ 

is considered. We shall determine the rotor position in a fixed system of 
axes Oxyz by the c.oordinates Xc ,Yc, Zc of the mass centre C and by the 

angles of rotation lpx, <py about the axes x, y . The angle lpz = OJ t . Let us 

denote the vector of the generalized coordinates by q = col(xc , Jc, Zc, l{Jx, lpy). 

Let the suspension state be assigned by the vector of the finite number of 
currents or charges n , whereas the elements of the vector of the 

generalized forces F = col<F1, .. . , F5) are considered as familiar functions 

of the variable q , q , n 

F =F(q ,q,p) (1) 

The equations of the rotor movements in the suspension under the 
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assumption of smallness of displacements q can be represented in the 

form 

Mx c = F1, Myc = F2, Mzc = F3; ( 2) 

J1f/Jx + wJ3q>y = F4, J1q>y - wJ3(/Jx = F5 ( 3) 

D(q,n ) =u, (4) 

where u is the vector of the control voltages on the windings of the 
electromagnets or on the electrodes; D is in the general case the non­

linear differential matrix operator [1,2]. 

Using decomposition of the complete system (2)-(4) into mechanical 
(2),(3) and electromagnetic (4) subsystems, we shall solve the problem of 
control in two stages : at first we shall find the forces F = F 0

, ensuring the 

required r otor movement, and then we shall determine the vectors n = tr 0 

and u= u 0
, realizing the forces F 0

, [2]. We shall find the solution under 

the assumption that the vector of the system state can be accurately 

measured and that the noise of measurements and external disturbances 

are not available ( the influence of these factors is discussed at the end of 

the article ). 

At the first stage the controlled objects are three systems (2) with one 
degree of freedom and scalar output variables y = Qj, j = 1,2,3, and the 

system (3) with two degrees of freedom and the two-dimensional output 
variable y = col ((/Jx, (/Jy ).The forces F control the objects. Let us reduce 

each of the systems to the normal form and add the equation of the output 

variable 

y =Cx (5) 

where 

x = col ( Qj, Qj ), f = Fj I M in case of the objects (2), and 

x = col ( (/Jx, (/Jx, q>y, q>y ), f = col ( F 4 I J 1, F5 I J 1 ) in case of the object (3); 

A, B, C, are the constant matrices. 

It is required to find the forces f = ro (or F = F o ), which during 

change-over of the system (5) from the arbitrary initial state x (O) into a 
zero one minimize the functional 
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J[ yT (t) y (t) + p(f (t) f (t)] dt 

where p is the positive weighting scalar. 

The solution of the problem has the form [5] 

r =- p-l BTPx (6) 

Here P is the positively defined symmetric n x n matrix, where n is the 

dimensionality of the state vector x , being a unique solution of the non­

linear matrix Rikkati equation 

CT C-p- lPBBTp +AT P + PA = 0. (7) 

The main difficulty in solving similar problems is to find the solution of 

(7) which is equivalent to the system n(n+l)/2 of non-linear algebraic 

equations with respect to the elements of the matrix P . For n > 2,as a rule, 

numerical methods [5] are used. Here we have the case when the problem 

has an analytical solution. 
With reference to the objects (2) three elements Pn = Zl, P12 = z2, P22 = 

Z3 of the matrix P satisfy the system of equations 

2 
z3 = 2 p z2, Z2Z3 = p Zl, 

having obvious solution 

Z2 = pl/2 • 

Taking into account of (6), we obtain that the optimal force response of 

the objects (2) has the form 

j = 1,2,3, (8) 

where ro0 = p-1/4 is the natural frequency of the translational rotor 

movements; ~ = ~I 2 is the damping parameter. From the relation p = 
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the physical sense of the weighting parameter p is clear. 

In case of the object (3) the problem is to determine ten elements Pn = 
Z l, P 12 = Z 2, •• • , P22 = z s, ••• , P44 = Z lO of the matrix P , satisfying the 

system of equations 

Z2 Z5 + Z4 Z7 - p Z1 - h p Z4 = 0, 

Z2Z6 +Z4 Z9 = 0, 

Z2 Z7 + Z4 Z10 - p Z3 + h p Z2 = 0, 
2 2 

z5 + z7 - 2 p Z2- 2 h p Z7 = 0, 

Z5 Z6 + Z7 Z9 - p Z3 - h p Z9 = 0, 

Z5 Z7 + Z7 Z lO - p (Z4 + Z6) + hp ( Z5 - Z lO) = 0, 
2 2 

z 6 +z 9 - p = 0, 

Z6 Z7 + Z9 Z lQ - p Zg + hp Z6 = 0, 
2 2 

Z 7 + Z 10 - 2p Z9 + 2hp Z7 = 0, 

where h = roJ 3IJ 1 is the gyroscopic parameter . Having expanded the 

functions z8 (h), s = 1, ... , 10, into a power series, one can make sure that 

the following equalities are correct 

Z l = Zg, Z2 = Z9, Z3 = Z7 = 0, Z4 = -Z6, Z5 = Z lQ. (10) 

Substituting (10) into (9) results in the system of four equations which 

has an analytical solution 

Z2 = 2z~ I ph2, 

Z6 = [{p4h8 I 64 + p3 h4 I 4)1/2- p2 h4 18 ]112. (11) 

Taking into account the fact that in accordance with (6) 

!;,_ = -p-1 ( Z2(/Jx + Z5(/Jx + Z 61P,y + Z7(/)y ). 
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~ = -p-1 ( Z4 (jJx+ Z7(/Jx + Zg<p_y + ZlQIPy ). 

and with r egard to (10) and (11), we obtain the following result. 
The optimal force responses of the object (3) have the form 

where 

~ = -J1 (k1(/Jx + k2(/Jx . k3<py ), 

~ = -J 1 (k1 <py + k2<py - k3(/Jx), (12) 

k1 = ...)h4/16 + 1/p . h2/4, k2 = ~2kl, kJ = h~k1/2. (13) 

The first terms in (12) are the moments of the elastic forces, the second 

ones are those of the dissipative forces, the third terms are the moments of 

the radial correction forces . 

A non-rotating rotor (h=O) has natural frequency of the angular 
vibrations !10 = k11/2 = p-1/4. As before, the physical sense of the weighting 

parameter pis explained by the relation p = !1~4 . For a rotating rotor as the 

gyroscopic parameter h increases from zero to infinity the elastic k1 and 

dissipative k2 coefficients in accordance with (13) must asymptotically 

decrease to zero, whereas the coefficient of radial correction k3 must 
asymptotically increase from zero to the value of k1 for h = 0. 

Consequently, the optimal controller is characterized by a non-permanent 
adjustment depending on the rotational frequency w. 

Characteristic equation 

corresponds to the closed system (3), (12). 
Its roots in the limiting cases h = 0 and h--1oo take the following values: 

A-1,2 = A-3, 4 = ( - I± j )p-1/4;-{2 for h = 0, 

and 
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lt3, 4"' p-lJ2f h for h ~oo, 

where j is the imaginary unit. 

For unchangeable h the quality of the transient processes in the 

optimal suspension is completely determined by the weighting parameter 
p. As p decreases the speed of response of the suspension increases but 

the values of the forces F 0 also increase. For p = 0 the values of F 0 will be 

infinitely great. In this connection the problem is solved by the trial 
method: the value of p is chosen so that the speed of response of the 
suspension should be similar to that required and the forces F 0 have 

acceptable values. 

At the second stage of solving the problem of the rotor suspension 
control for a familiar force response of the suspension F = F 0 

( q, q ) by 

means of (1) and (4) one can find the variables of the suspension state rc = 
1f and the control voltages u = U 0

, realized the forces F 0
, [2]. 

As to the external disturbances and noise of measurements which 

were nol. taken into account in the problem of synthesis let us note the 
following. If the disturbances are controlled, they will enter into (1), 1f , U 0 

and, consequently, will automatically be counteracted by the suspension. 

The required quality of counteracting uncontrolled disturbances is 
achieved by the corresponding choice of the weighting parameter p. The 

noise of measurements restricts the bandwidth of the differential links 

used for calculating the speeds q. Therefore, in case of non-optimal but 
simpler controller with permanent adjustment in which k3 = 0, k1, k2 are 

the constants, there always exists a threshold rotational frequency at 

which the suspension loses its stability. In physical sense this means that 

at the threshold rotational frequency because of the errors in calculating 

the speeds high-frequency nutational rotor vibrations at the frequency h 

are not damped but on the contrary are replenished from the direction of 

the suspension. The suspension with the optimal controller has no 
disadvantage of that kind because damping nutational vibrations is 

carried out not by dissipative forces but by forces of radial correction. 
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