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SUMMARY: This i s an extended version of the lectures , which wer e de livered by 
the author in the Technical Universities of Helsinki and Tampere in spring 
1991 . The paper does not pretend to give a complete presentation of the 
discussed problems, rather it expresses some aspects from the sphere of the 
author's interests . The number of references has been kept as possible short: 
mainly only such papers and textbooks, which are directly connected with the 
methods and solutions, discussed in the paper, are referred. 

The problem about the dynamic response of elastic-plastic structures is 

complicated and it mostly can be solved only numerically (e.g. by the FEM). In 

several problems the plastic defamations dominate and it is possible to 

neglect the elastic deformations. In such a case we have the model of a 

rigid-plastic body . Here only the two following states are possible: if the 

stresses are below the yield stress, the naterial rerrains rigid; in the 

apposite case the naterial yields. According to this conception rre.ny problems 

about the response of structures can . be solved analytically and we get 

close- form solutions, which usually are in good accordance with the 

experimental data . It has been assumed, that the conception of a rigid-plastic 

body is applicable, if the plastic energy exceeds naxinal elastic energy more 

than ten times. This requirement can complicate the solution of the dynamic 

problems, because the external forces nay be so high that geometrical 

nonlinearity of the structures llllst be taken into account. In static problems, 

where we have to calculate the carrying capacity of the structures, the 

elastic and plastic energies have the same order of rragnitude, therefore it 

can be assumed that the model of the rigid-plastic body is more favorable for 

dynamic problems. The gap between theoretical and experimental results can be 

still reduced if we shall consider the naterial strain- hardening and the 

strain rate sensitivity, but in the other hand it highly complicates the 

solution of the problems in question . 

In the following analysis we shall not consider the stress wave 

propagation problems ( "early time response") ; we shall assume that the time 

duration is so great (typically of the order of milliseconds), that the 
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stress-waves have reflected several times from the supports. 

For simplicity sake we shall confine us in following with beams and 

axisyrrmetric shells . The conception of a rigid-plastic body can be 

successfully used also for the response of more CO!l1Plicated structures 

(circular and annular plates, axisyrrmetric shells e. t . c. ) . Solutions for such 

problems can be found in some textbook (e.g. N.Jones, 1989). 

EllJATIOOS OF MJI'IOO 

We shall consider a beam with a rectangular cross-section; B, h and l are 

the width, thickness and length of the beam. The beam is subjected to a 

transverse load. If we shall take into account also the axial forces in the 

beam, the equations of motion are 

Here * X 

* deflection, q 

ar* 
ax*2 

* is the axial coordinate . u - axial displacement, 

- lateral pressure, p - density, t* - time; T* 
denote the axial force and the bending moment, respectively. 

Let us introduce the following dimensionless quantities 

* ( ~ ) 1/2 .£ t* 
* * X t u w 

X = r c = = u = r ' w = h l 

* 4q*l2 r* 4M* lv T M v = hc ' q = 
a Bh2 . = ' = ~2 a Bh 

s 5 s 

* w 

and 

( 1) 

(2) 

(3) 

V* - denotes the m' 1' t{~1 In these fornulae a is the yield stress, ......,. 
s 

velocity (for the impulsive loading). 

The equations ( 1)-( 2) take now the fonn 

T' = i.i ' M"+ 4 c1'w')' + q = 4w (4) 

From now on primes and dots will denote differenciation with respect to x 

and t. 
For the rigid-plastic naterial hinges appear in some cross-sections of 
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the beam (Fig.l ) . 
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Fig.l. Distribution of stress in a cross- Fig.2. Yield curve for the beam. 
-section with a pLastic hinge. 

It follows from this Figure that 

(5) 

* If we shall eliminate the quantity z0 from these equations and go over 

to the dimensionless quantities ( 3) , we get the yield curve in the form 

(Fig.2): 

(6) 

PLastic defo:rrrations take pLace only then .. when the point (T,M) lies on 

the yield curve (if we are inside this curve, the corresponding cross-section 

renains rigid). 

According to the flow rule the strain rate vector E = •* •* (e ,u ) nust 

be normal to the yield curve. This condition gives 

·* 21-l T + 6w'w' e = 0""13'i1 = u (7) 
s 

_it:__ M = h w" 
a Bh2 - 12 6 = (8) 

s 

Here 1-l > 0 is the coefficient of pLasticity. By eliminating 1-1 from 

the equations (7)-(8), we obtain 

u 
6 

= - 2 Tw" + 2w'w') (9) 
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At the vertexes T = ± 1 the vector E is nonunic - it may have any 

direction between the normals at the vertex. 

This requirement can be put into the form 

' 6 '·' 6 lw"l u + w w < 2 (10) 

In the cross-section, where plastic hinges appear, the jump conditions 

ITUst be fulfilled. If the symbol ] denotes jwnp on the cross-section x = l; , 

then these conditions are as follows: 

( i) Since w and w ITUst be continuous, we have 

w] + l;w'] = 0 (11) 

w J + 1: w' J = 0 . (12) 

( ii) In the case of a moving hinge we have w' ] = 0 and followingly 
. . 
w' ] + 1; w" ] = 0 ( 13) 

(iii) By integrating the equation (10) and second equation of ( 4) over the 

cross-section X = { we get 

u] = + 0,5 T(l;)w'] ( 14) 

tvr] = - 4T(l; )w'] . (15) 

To the equations ( 4) belong still the initial and boundary conditions, 

but these we shall write out when we are going to solve definite problems. 

DYNAMIC~ OF RIGID-PLASTIC HF.AM> 

As the first problem let us consider a beam with simply supported ends. A 

uniform pressure q * , which varies in time according to the rectangular law 

(16) 

is applied. In this chapter we shall confine us only to the case of snell 

deflections; besides we shall neglect the axial displacement. Therefore 

u = T = 0 and the equations ( 4) take the form 

M"+q=4w ( 17) 

fue to syrrmetry we can examine only one half of the beam. The origin of 
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the coordinate x we shall put into the midpoint of the beam (Fig. 3a). 

G\,J -0.5 0 0.5 

Ji,~· --+----J4.7t -X 

Fig. 3a). Transversally loaded beam, 
b).Deflection rate profile . 

-0.5 -S0 0 

"'J ~ l 
Fig.4.Deflection rate profile for 

high loads . 

We shall asaune that in the section x = 0 a plastic hinge appears . The 

deflection rate profile has now the form 

w(x,t) = v (1 - 2x) . (18) 

Differentiating this equation with respect to the time we get 

w(x, t) = :.., (1 - 2x). This result we shall put into the equation of motion 

( 17) . By integrating this result twice in regard of the coordinate x and 

sa.tisfying the boundary conditions M(0.5,t) = M'(O,t) = 0 we obtain 

q 1 2 v 2 3 
M = 2 ( 4 - x ) + '3 ( -1 + 6x - 4x ) (19) 

Since we have a plastic hinge at x = 0, it JIDst be M(O,t) - 1 and 

the equation (19 ) gives 

. 3 
v = 8 (q - 8) (20) 

For static loading we have v = 0 and so the static limit load is 

qst = 8 . It follows from equation (20) that the quantity v does not depend 

upon time: this allows us to integrate this equation twice with regard of 

time. Considering the equation (18) we obtain 

w(x,t) 3 = 8 (q - 8) t (1 2x) 

(21) 
3 2 w(x,t) = I6 (q - 8) t (1 - 2x). 

These results are valid for the loading stage t < t 1 . In the instant 
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t = t 1 the load is taken off and the following rootion takes place by inertia. 

For this stage the equations ( 17)- ( 18) remain valid, if we shall take q = 0. 

Satisfying the continuity conditions for w and w at t = t 1 we get 

. . 
w(x,t) = w(x,t

1
-) - 3(t - t

1
)(1 - 2x) (22) 

The motion stops at an instant t = tf' where w(x, tf)=O. It follows 

from equations (21)-(22) that tf = (qj8)t1. Putting this value into (23) we 

find the residual deflections in the form 

3 2 w(x,tf) = T28 q (q - 8) t 1 (1 - 2x) (24) 

This result is valid only if the inequality I M) (x, t) I ~1 is fulfilled 

for lrl x e (0,0.5) and for lrl t e (O,tf) . It follows from (19) that the 

bending moment has an extrenu.m at x = 0: this will be a naxinllm if 

M" ( 0, t) < 0 . M3.king use of the equations (19)- ( 20) , this condition can be put 

into the form q<24. Followingly our solution holds if the load does not 

exceed the static limit load roore than three times (the case of medium loads). 

For high loads (i .e. q>24) the solution is roore complicated. Therefore we 

shall not go into the details and shall present here only the rna. in results . 

Now we must assume , that the plastic hinge does not appear in the centre of 

the beam, but in some cross-section x = s0 . The deflection rate profile has 

the form as shown in Fig . 4. It follows from the equation ( 17) that s0 = canst 

for loading stage t < t 1 and it can be calculated from the formula 

_1 (6) 112 
5 0 - 2 - q . 

The deflection rate and deflection in the midpoint of the beam x 

the loading stage are 

(25) 

= 0 in 

(26) 

The unloading stage t > t 1 falls into two substages. In the first 

substage the hinge x = s0 begins to travel and continuously rooves to the 

midpoint x = 0. After that the second substage begins. Now the deflection 

rate can be found from the equation ( 18) . This substage goes on to the instant 

t = tf where the rootion is terminated. The residual deflection of the centre 
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for this instant is equal to 

(27) 

The inequality I Ml :5 1 holds for arbitrary q > 24. 

In an analogical way the beam response problem can be solved for other 

boundary conditions. The assumption of a rigid-plastic body has approved its 

advantage also in solving several problems of dynamic response of circular 

plates and axis:vmmetric shells (see e.g. Jones, 1990). 

APPJ.DXIMA'IE ttmDffi OF CALaJLATIOO 

The method of solution, which was presented in the previous chapter, brings us 

in the case of more complicated problems to troublesome calculations. For such 

cases approxi.nate methods of solution have been worked out. From these most 

known is the method of mode form solutions, which was presented by Symonds and 

M:utin ( 1966) . Although this method is applicable for arbitrary structures, we 

for conciseness sake shall consider only the case of beams, making use of the 

dimensionless quantities (3). 

According to the method of mode form solutions we shall seek the 

deflection rates in the form 

(28) 

where ~ (t) is the amplitude function, V (x) - the spatial mode (which is 
m 

prescribed). We shall choose the function ~(t ) so, that the modal velocity 

wm would be as possible near to the actual velocity. This requirement can be 

put into the form 

1 

~(t) = f [~m(x,t) - ~(x,t) ]2dx = min 

0 

(29) 

M3.rtin and Symonds have shown, that ~(t) :5 0; followingly the 

difference between the two solutions is biggest in the initial instant t = 0 

and so we have to minimize the quantity 

0.5 

f 
. 2 

~(0) = [~ (O)Vm(x) - w(x, 0)] dx . 

0 

The extrenurn condition clA(O)/d~(O) = 0 gives 
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!1?(0) = 

0.5 

J w(x,o)Vm(x) dx 

0 
,5 

f v!(x) dx 

0 

(30) 

So we have found the initial value for il?(t); the function il? (t) itself 

we shall calculate by integrating the equation of motion ( 17) . 

M9.rtin and Symonds presented their method for the case of irnpulsi ve 

loading (i.e. the initial velocity is prescribed). But it can be used also for 

pressure loading, if the load varies in time according to the law ( 16) . Now in 

the loading stage t < t 1 we shall use the exact solution and apply the mode 

form solution only for the unloading stage (here instead the initial instant 

t = 0 we must take the value t = t 1). In following we shall demonstrate the 

method for the case of high loads from the previous chapter. 

For the loading stage we shall use the equations (26). As to the 

unloading stage t > t 1 , we shall take the spatial mode Vm(x) in the form 

Vm(x) = 1 - 2x , corresponding to the velocity profill of Fig.3b. TI1e actual 

velocity field in the instant t = t 1 is 

w(x,t1) = 
. { 0.25qt1 

0. 25qt( 1- 2x) I ( 1-2 50) for X E (sa' 0. 5) 

M:l.king use of the equations and calculating the integrals in equation 

(30) we get 

Now we shall integrate the equation of motion 

form solution obtains the form M" = = !1? ( t )( 1 - 2x) . 

conditions M'(O) = M (0.5) = 0, we find that M(x) 

(31) 

( 17) , which for the mode 

Considering the boundary 

= 4?(t)(6x2 - 4x3 - 1)/3. 

Since in x = 0 must be a plastic hinge, we have M(O) = 1 and followingly 

9? ( t) = -3. By integrating this equation we get 

(32) 

The motion is terminated at t = tf : it follows from the equation (32) 

that 
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(33) 

Now we have to integrate the equation (28) with regard of time, by taking 

x = 0 and making use of the equations (31), (33) we find 

(34) 

As an example let us carry out the calculations for q = 40. It follows 

from the equation (25) that s0 = 0.1127. The forrrula (31) gives 

~ ( t
1

) = 12. 00. Calculating the quantity w( 0, t 1) from the equation ( 26) we 

finally find w(O,tf) = 29.00ti. For the exact solution we get from (27) the 

value w(O,tf) = 28.33ti , so the error of the mode form solution is only 

2.4% . 

In most problems of the dynamic reSPOnse of structures the method of mode 

form solutions guarantees exactness, which is sufficient for practical 

purposes. Nevertheless sometimes more exact solutions would be needed. There 

are several methods for increasing the exactness achieved by the mode form 

solutions. We shall describe here only a method, which we have called the 

"method of quasimode solutions" . 

According this method we shall seek the solution of the problem in the 

form (Lepik, 1979) 

n 

w(x,t) = L ~i(t)Vi[x,s1 (t),s2 (t), ... ,sq(t)] 

i=1 

(35) 

where s
1
(t),s

2
(t), ... ,sq(t) are some parameter functions (e.g. the locations 

of the plastic hinges). The functions, which differently from the usual modes 

contain free parameters, we shall call quasimodes. Each quasimode must have 

the potentiality to tend towards a perrranent mode in the beam motion. 

As an example let us examine again the dynamic reSPOnse of a beam under 

high loads. Here we shall confine us to two terms in the series (35) and take 

{ 

-1 + 2x/s 

v1 = 1 - 2x . v2 -

(1 - 2x)/(1 -2s) 

for x e (0, s) 

for x e ( s, 0 . 5) . 

Since w'(O,t) = 0, we have ~ 2 = ~ 1 and the equation (35) obtains the 

form 
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for x e (0, s) 

w(x,t) = ili 1 (t) 
{ 

1 - 5 

(1 - s)(1 - 2x)/(1 - 2s) for x e ( s, 0. 5) , 

which corresponds to the velocity profile from Fig.4. The following solution 

does not differ from the exact solution that was considered before; so this 

example is only of methodical value . 

For more complicated problems the method of quasimode form solutions may 

be valuable . M3.king use of this method dynamic response of a beam under a 

concentrated load was solved (Lepik, 1981) . 

a) 

Fig .5a) .Beam under a concentrated load, 
b).Deflection rate profile. 

a,) 

lr) 

c) 

d) 

Fig .6.Evolution of the deflection 
rate profiles. 

For high loads three plastic hinges appear (Fig. 5), in the unloading zone two 

of these hinges get lost and the third hinge begins to move towards the centre 

of the beam. When this hinge reaches the centre, the motion is terminated. 

Another problem was solved by Lepik (1982). The inducement to this 

problem was the following natter : in some papers has been expressed the 

opinion that higher modal response of a beam is more efficient in practical 

design, since the absorbing of kinetic energy is greater as for the first 

mode . To verify this statement, we have taken for the initial velocity field a 

profile corresponding to the second mode (Fig.6a) and followed the evolution 

of this profile in time (Fig.6b-d) . It follows from the calculations that the 

second mode is unstable in the sense of Lyapunoff : for slight deviations this 
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mcxie steadily goes over to the first mode (Fig. 6d) . This obstacle rrake s 

difficult to use the higher modes in the energy-absorbing devices. 

Method of quasi- mode form solutions was applied also for optimal design 

of two- stepped beams under impulsive loading (Lepi.k, 1983). 

CIMUl'ER AIDED DESI~ OF STFFPED STIUCI'IJREE 

Let us consider beams for which the thickness is a piecewise-constant 

function of the beam coordinate. Such stepped beams are quite relevant in 

engineering practice, since the technology of nanufacturing such beams is 

simpler than in the case of beams with continuously varying thickness. If the 

reterial of the beam is rigid-plastic, hinges appear in some cross-sections. 

Generally the number of hinges and their locations are not known, besides 

during the motion of the beam new hinges can appear or some of the existing 

hinges can disappear . All this rrakes the solution of the problem very 

complicated: we must look through many possible variants, from which only one 

holds. If we would deliver the analysis of all conceivable variants to a 

computer, much time and efforts in solving the problem could be saved . 

First this idea has been realized by Lepi.k and Just in 1981 (the English 

version was published in 1983) . In this paper the method of mode form 

solutions has been used. The case of moving hinges has been examined by Lepi.k 

and Lepi.kult ( 1987), where an algorithm for calculating the residual 

deflections has been proposed. This algorithm seeks the proper plastic regimes 

and locations of the plastic hinges, which are found autOITB.tically on a 

computer with the aid of Fortran-programs . According to these programs a large 

class of problems can be solved (beams with various number of steps and 

parameters of beam segments, the cases of arbitrary loading and boundary 

conditions, optimization problems). The relevance and efficiency of these 

programs will be shown by the following example. 

A simply supported four-stepped beam of Fig. 7 is loaded by continuous 

pressure load and by a single load P
1 

= 30. Dependence of the loads upon time 

is taken in the form 

p(x, t) = p0(x)exp [ 
rr(t* - t) l sin(rrt) 

tan(rrt*) · sin(rrt.*) 

where t* = 0 . 2 . 
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Fig. 7 . Simply supported beam under lateral loadillg 
a ) load distribution, b) beam dimensions. 

1:=0.004-~ 

T=O.OO&~ 
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't=0.9 0~ 

---
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Fig.8.Deflection rate profiles for the beam of Fig.7 . 

Development and disappearance of the hillges is shown in Fig.8, where for 

the ordinates the deflection rates w have been taken. At the instant. 

t = 0. 004 a plastic hillge appears in the midpoint of the beam. Afterwards a 

second hinge appears at x = 1. 5. The first hinge begins travelling and 

disappears if t = 0. 40. At t = 0. 14 a new hinge appears in the section 

x = 1. 5 and disappears at t = 0. 40 . At later times a hinge appears in 

x = 1. 0 and the hinge in x = 1 . 5 starts moving to the left. In final stage 

we have only one hinge in the midsection x = 1. 0. The motion stops at 

tf = 13.79, the ma.xi.nal residual deflection is 42.77. 

The ffi.lne problem for stepped circular and annular plates for axisyrrrnetric 

bending was discussed by Salupere ( 1982) . 
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Now let us consider beams, whose ends are prevented from displacing 

axially and which are subjected to transverse loading. In such beams axial 

forces arise and we have to consider the geometrical nonlinearity. For 

rigid-plastic naterials this problem was first discussed by Symonds and Mentel 

( 1958 ) . After that nany publications were devoted to this problem (Jones 1971, 

1973, Symonds and Jones 1972, Symonds 1980, GUrkok and Hopkins 1981 et al.). 

This interest has held out up to the last time (Vaziri, Olson and Anderson 

1987, Schubak, Anderson and Olson 1987 e . t.c . ) . Several approx:l.nate solutions, 

which are in good accordance with the e:xperimental data, have been obtained. 

However it seems to us that an exact and nathenatically fully correct solution 

is yet wanting. For assurance of this statement, we shall bring the following 

arguments . 

For getting an exact nathenatical solution to the problem we nust satisfy 

the equations of motion (4 ) with initial and boundary conditions, the yield 

condition (6) and the inequality (10); besides in the cross-sections, where 

plastic hinges occur, nust be fulfilled the jump-conditions (11)-(15). 

Traditional approach for this problem is as follows. The axial 

displacement u is snall and can be neglected; it follows from the first 

equation of ( 4) that T = const (the axial force along the beam is constant). 

In cross-sections x = ±s plastic hinges appear, they move towards the centre 

of the beam. In some instant they get together and for the following motion we 

shall have a stationary hinge at x = 0 . The axial forces T increase with 

the deflections; if T = 1 it follows from the yield condition (6) that 

M = 0. It means that the motion goes over to the membrane stage (the beam 

behaves as a plastic string) ; if q = 0 the equation of motion takes now the 

form 

w" = w . (36) 

Against this solution the following critical renarks can be nade. 

( i) If T oil! 0 there cannot be a stationary hinge at x = 0, since the 

jump condition ( 15) will be violated (we have w'] oil! 0, but M'] = 0 , since 

the shear force Q = M' nust be zero at x = 0 ) . Thereforewe nust assume 

that the hinge at x = 0 splits again into two hinges, which travel farther 

from the centre . 

( ii) If the whole beam transfers to membrane stage, then the following 
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motion takes place according to equation ( 36) . This is a hyperbolic equation 

and has no dissipation; consequently the motion would never stop. Besides it 

turns out that inequality (10) is not fulfilled in each cross-section. 

Therefore we ITUst assume that there are some rigid zones in the beam 

(appearance of such zones has been supposed already in the paper of Symonds 

and Mentel 1958) . In the unloading stage these zones will spread over the 

whole beam and the motion stops. 

(iii) If the loads are not very high then the axial inertia effects nay 

be really omitted and we can take T = canst. In the other hand this asumption 

may turn out to be unsuitable, if we shall investigate the transition of the 

beam into the membrane stage (if T "' const various cross-sections of the 

beam transfer to membrane stage at different li1stants). 

To get a solution of the problem, in which all these remarks are tal~en 

into account , is mathenatically very complicated and it has not succeeded up 

to now. Since some quantities for of such a solution are not continuous, it is 

also difficult to get numerical results making use of FEM or other nwnerical 

tecru1ics . All this brings to the idea to give up the rigid-plastic model and 

to solve the problem nwnerically for an elastic-plastic material. 

For elastic-plastic problems several approximate technics have been 

worl~ed out. From these we shall here describe briefly the method proposed by 

S~nonds (1980). According this method the elastic and plastic response phases 

are separated; the motion being treated as either wholly elastic or 

rigid-plastic. In the first stage we shall assume that the motion is purely 

elastic; this phase is termli1ated, when the yield condition (6) is satisfied 

in some cross-section of the beam. Then follows the second stage, where the 

~1ole beam is rigid-plastic (with small deflections), a mode form solution is 

seel~ed. Third stage is a membrane stage (finite rigid-plastic deflections). 

After that follows a stage of elastic recovery (an half-amplitude deflection 

of elastic vibrations is subtracted from the maximal deflection to obtain the 

final pernanent deflection). 

This method is simply enough for practical purposes and in good 

accordance with the results of tests. 

<XXJNTERIN'IUITIVE BI!HAVIOR OF ELASTIC-PLASTIC BF.AM> 

Let us consider again an elastic-plastic beam attached to fixed pins and 

subjected to a short pulse of uniform pressure. After maximal deflection the 
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beam moves backward to a deflection on the negative side and after that 

elastic vibrations between mininum and naxinum values of deflection take 

place. Symonds and Yu (1985) have noticed that for some values of the load 

both these extreme values may be negative and so the applied pulse results in 

a permanent final deflection in the opposite direction. This phenomena was 

called the counter- intuitive behavior of the beam. Such effect was noticed 

also for circular plates by Galiev and Nechitailo (1986). 

For more detailed analysis of the counterintuitive behavior of beams 

Symonds e. al. have made use of a Shanley type model. This model consists of 

two rigid bars, which are connected by a small elastic-plastic "cell" (Fig . 

9). It has only one degree of freedom, but in spite of it can treat all the 

essential physical ingredients of a continuous beam. Symonds and his 

collaborators have shown that permanent negative deflections take place only 

in a narrow gap of paranaters. 

Fig. 9. Shanley model for the beam. 

0.0~0 

0 

-0.0~0 
P==5~9 N 

0 0.005 0.0~5 

Fig.10.Counterintuitive behavior 
of the beam 

0.025 

This is demonstrated in Fig. 10, where the increase of the load only by 1 N 

completely changes the behavior of the beam. 

The fact that the problem in question is very sensitive to small changes 

of parameters brings us to a assumption that the behavior of the beam may be 

chaotic. This problem was discussed by Poddar et al. ( 1988) , who took into 

account also damping. Their conclusion was that in the phase plane of the 

initial values some regions exist , where chaos takes place. The boundaries 

between the chaotic and non-chaotic regions are fractal. 

This point of view was criticized by Borino, Perego and Symonds (1989). 

They marked that Poddar et al. had taken the damping coefficient variable (in 

the beginning of the motion it was zero), but in a real problem it nust be 
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constant. Symonds and his collaborators h9.ve also put together the energy 

diagram and showed tlat for Slanley model it las two minim:l. (Fig, 11) . 

.,r 
'o .._.. 

)( 

> 
~~0 

~ 
c ·c; 

J;::. 5 (,J 

.Sl 
-:n 
~ 0 L----------.--·-~'--

-0.01 0 0.0~ 
Di~~Lo.cement a. (em) 

Fig. 11. Elastic complementary energy as a Fig. 12. Unloading and secondary 
function of midpoint deflections. loading zones in a compressed 

beam. 

The left minima lays in the range of negative deflections. Due to dissipation 

the motion stops in one of these minim..un points; in which depends from the 

initial data. The "well" around the left minim:l. is significantly smaller and 

therefore it is quite difficult to reach the bottom of this "well" . So Symonds 

et al. lave shown convincingly th9.t in the case of the Slanley model the 

motion is fully determined and there cannot be any ch9.os . 

.KST-BJCKLOO ST!ill: OF <ll1PHl!ESED PLASTIC BF..IIH) .AND CYLINDRICAL ffiELLS 

Let us consider a structure under compressive forces and asswne tlat the 

loss of stability las tal{en place beyond the elastic-limit . If we slall go out 

of the Shanley conception, then in the beginning of the buckling the Whole 

cross-section of the structure is plastic . In post-buckling stage there 

appears first an elastic unloading zone, but very soon inside this zone arises 

a zone of secondary plastic deformations (Fig. 12). The zone of secondary 

plastic deforrrations increases rapidly with the growth of deflections. Due to 

this fact the primary and secondary plastic deformations begin to dominate and 

between them only a narrow zone of elastic unloading remains . 

The analysis of the post-buckling stage of elastic-plastic structures is 

nathematically complicated, since we nust calculate the boundaries of the 

plastic zones; besides unloading and secondary loading begin in different 
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points of the cross-section at different instants. Therefore it is 

understandable that we do not have much results in this field at the present 

time. 

The smallness of the elastic zone in the cross-section of the structure 

brings us to the idea to neglect the elastic deformations at all and to solve 

the problem for a rigid-plastic naterial. 

0 ·-----
0.5 ~.0 t ~.5 

Fig .13. Polygonal plate under uniform Fig .14. Deflection-load curves for 
compression. axially compressed beams. 

This has been done by Rzanitchyn (1956), who has considered the post-buckling 

problem of a polygonal plate under uniform edge pressure, it was assumed that 

the plate deforms along the hinge lines (Fig.13). Rzanitchyn showed that in 

the post-buckling stage the pressure q monotonously decreases, but 

approaches asymptotically to a value, which is 0. 477 from the critical value 

of q. 

To show the simplicity of the solutions for rigid-plastic naterials we 

shall consider the problem of an axially compressed beam with simply supported 

ends. Since we have here a static problem and q = 0 , the equations ( 4) after 

integrating with respect to the dimensionless coordinate x get the form (P -

is nondimensional compressive load) 

T = - P = canst , M(x) = 4Pw(x) 

In the midpoint x = 0 we have a plastic hinge and there the yield 

condition (6) holds, followingly M(O) = 1 - p2 If we shall denote 

f = w(O), we find that 
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f = 0.25(1/P - P ) (37) 

In the bifurcation point we have f = 0 and therefore P = 1. It follows 

from equation that if f increases then P monotonously decreases and - P -+ 0 

if f ... 00, 

In a paper by Lepik (1988) the same problem was solved for rigid-plastic 

mate rial wit h linear stra in- hardening. The effect of the stra in hardening was 

estimated by the parameter 

_ 16E ' ( h )
2 

Y - -;:;- I ' 
s 

where E' is the t a ngent modulus . 

(38) 

The same problem for elastic-plastic materials was solved by Lepi.k and 

Sa.kkov ( 1976) ; the solution is approximate since it was assumed that the 

deflection curves w(x ) have the form of a sinusoid. The results are 

presented in Figs. 12 and 14 . In Fig. 12 the distribution of elastic and 

plastic zones in given, the quantity f denotes the relation of the maximal 

deflection to the thickness of the beam. In Fig . 14 the load-deflection curves 

are shown , solid lines correspond to the rigid-plastic mater:i.al, dotted lines 

- to elastic-plastic solution . In the case y = 0 we have rigid- plastic 

material without strain hardening . It follows from these results that - in 

spite of the different assumptions for both solutions - the influence of t he 

elastic defamations is not essential . So we come to the conclusion that at 

least for beams the conception of rigid-plastic materials gives quite 

satisfactory results. 

Now let us pass to another problem. We shall consider a cylindrical shell 

under axial compression, the radius, length and thickness of the shell we 

denote by R, 1 and h, respectively . We shall assume that the deflections 

of the shell are axisymnetric (also in post- buckling stage) . Let us intr oduce 

the nondimensional quantities 

* X 
x = r 

2 0 

1 * u = 2 u 
h 

(i = 1 , 2) M = 

* w w = n 

4M* 
--:-2 
Cl h 

s 

* p 
p = a-n s 

( :39) 

C( = ( k J 1/2 



* * * Here u is axial displacement, w - deflection, p axial 

compression, T~, T; - radial and circumferential membrane forces, tf -
bending moment; a - is a parameter, which characterizes the length of the 

shell. 

&king use of the fornulae ( 39) , the equilibrium equations can be put 

into the form 

(40) 

We shall tal{e the yield condition in the form 

(41) 

BY assuming that the deformation vector E = ( e 1 ,e2 ,u) is perpendicular 

to the yield surface; we obtain 

( 42) 

w" = - 6AM , 

where A ~ 0 is the plastic coefficient. 

BY eliminating A from equations ( 42) we get 

6a2M 2 2T 1 
- T2 1 ,2 

w" = 2T2 Tl 
w u = C( 

2T2 Tl 
w - 2 w (43) -

The unlmown quantities are u, w, T1' T2 ' and M, they can be 

calculated from the equations (40),(41) and ( 43). To this system of equations 

belong also the boundary conditions, which e .g. for a simply supported shell 

have the form u(l) = w(O) = M(O) = w(1) = M(l) = 0. This system of equations 

was integrated numerically by the method of R.mge-Kutta. Let us present here 

some results from the papers by Lepil~: ( 1989 a, 1990) . 

In the instant, when the shell looses its stability, we have T 2 = M = 0; 

it follows from equations (40) - (41) that T1 = - P_tu. = - 1 and follow:l.ngly 

P.trr = 1. Calculations show, that in the post-buckling stage the parameter p 

decreases monotonously. Two cases, where a = 2 (short shell) and a = 4 

(long shell) were investigated. 
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Fig.15.Bending moment distribution in 
an axially compresssed 
cylindrical shell. 
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{ \ 
\ 

5 ~0 lUI ~5 

Fig.16.Nonunigueness of the solution 
for the cylindrical shell . 

In Fig.15 are given the distributions of the bending moments along the shell 

for four values of the nondimensional load p. It follows from this Fig. , that 

in the post-buckling stage a redistribution of the bending moments can take 

place (at p = 0.98 we had only one half wave, but for p = 0.70 the number 

of half waves has increased up to 5). It follows from Fig . 16, where the load 

p versus axial displacement u(O) is presented, that in the post-buckling 

stage some bifurcation points exist and so the solution is no more unique. In 

the case of a rrultiple solution one could ask, which branch of it should be 

used for practical purposes. It seems to us that we should prefer the 

solution, for which the axial displacement u(O ) is bigger, since here the 

energy dissipation is higher. 

In the case of long shells rraxi.rml deflection is no more in the midpoint 

of the shell; consequently one parameter approxi.rmtions for the deflection 

curve (in the form of a parabola or sinusoid ) rray bring to inaccurate results. 

DYNAMIC HI!EfUffiE OF AXIALLY CII1PRI!SSED BFJ\M3 

In this chapter we shall examine two dynamic probl ems for rigid-plastic 

axially compressed beams. We shall assume that both ends of the beam are 

simply supported; the cross-section x = 0 rray move in the axial direction, 

but the section x = 1 is pinned . For solving these problems we shall go out 
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from the equations ( 4), (6), ( 10)-(15); dimensionless quantities of the 

equations (3) are used . If the axial load is high enough, plastic hinges 

appear . We shall consider only the case, where we have only one hinge in the 

midpoint x = 0 . 5. Since the cross- sections, for which x ~ 0.5, re!TE.in rigid, 
•* •* we have e = -n = 0. 1:13.king use of the equations ( 7)- ( 8) and from the 

boundary conditions w(O) = w(l) = 0, u(1) = 0 we obtain 

w = 2fx for x e (0,0 . 5) 

(44) 

W = 2f(1 - X ) 
') 

u = 26f'"'(1 - x) for x e ( 0. 5, 1) 

By satisfying the jump condition we find that 

T
1 

= T(0 . 5) (45) 

Further on we shall integrate the equations of motion, satisfying the 

boundary conditions and the hinge condition ( 15); besides in midpoint x = 0. 5 

the yield condition (6) must be fulfilled . Carrying out these calculations we 

get the following equations 

(46) 

1 .. 1 . 2 
T

1 
= - P + 2 u

0 
- 2 o(f + ff) 

where P is the nondimensional compressive load in the end of the beam 

X = 0 . 

If u~/a < 10-3 ' where a is the speed of the elastic wave, the axial 

inertia effects !TE.Y be neglected. In this case ii = 0 and it follows from the 

first equation of (4) that T = - P = canst . The set of equations (45)-(46) 

gets now the more simple form 

f = 3(4Pf + P2 - 1) ' (47) 

Now let us go over to the first problem (Lepilt, 1989 b). 

We shall assume that the end of the beam moves with a prescribed axial 

velocity v . For such kind of problems the velocity is quite moderate and we 

can use the equations ( 4 7) , taking for the axial displacement u0 = vt. Now we 

can integrate the system ( 47) numerically . The results for the parameters 
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h/1 = 0. 1 and v = 0. 01 are presented in Fig .17. 

p 
~.0 

0.~ 

0.6 

...... . "-. n () 1 
0 ~ Y\L_ __ f--> ~2_---.-.4------:-6------i~ 

02l ~VV\1\J\J. 
0 2 4 6 t 

2.0 

(') 

Fig . 17 .Axially compressed beam, the 
end section is displaced with 
a constant speed. 

6 

Fig.18.Rigid-plastic beam 
struck by a mass. 

It is interesting to note, tret the functions P = P(t) and f = f(t) are 

oscillating . 

The second problem is put up as follows (Lepik, 1990). The end of the 

* beam is struck by a zn:1.ss G, which is moving with a given velocity v . If 

the strild.ng impulse is great enough the deformations of the beam are plastic 

with a hinge in the midpoint x = 0. 5. We lave to find the contact force and 

the midpoint deflection as functions of time (Fig. 18) . 

The contact force we can calculate from the formula 

which for nondimensional quanti ties ( 3) obtains the form 

(~t = G/(pBhl)) (47) 

Now the tmlmown functions are u0 , T 1 . P and f. These we can find by 
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integrating the equations (45) - (47) with regard to time t. This has been done 

by Lepik (1989 b) for several values of parameters h/1, v and ~ . It 

follows from these calculations that the contact force P decreases 

monotonously in time and at an instant t = t 1 if becomes zero. l!'Urther on 

there are two possible cases. 

( i) If u 0(t1) < 0 the i.mpa.ct is terminated and the rrass G moves in 

the opposite direction with a constant velocity u
0

(t
1

). 

(ii) If u(t)>O, there can be a llllltiple impact. Since P(t
1

) = 0, we 

slall assume that the hinge gets "freezed". Now the contact force starts to 

grow again and at an instant t = t 2 a second i.mpa.ct tal{es place. All this 

can be repeated several times and so we get the nultiple i.mpa.ct . This case for 

parameters h/l = 0.05, v = 0.1, ~ = 0.5 is shown in Fig . 19. 

~~l P f ~oo:,:r~01, oe~05 
OAl~~i'--
O 0.05 0.~0 CJ5 t 
1.0 

0.8 I l_ 

0 L---------~----------~------~~- ~ 

~.~~ ~~5t 
[J 0.05 0.10 0.15 

Fig .19. M.lltiple i.mpa.ct for the beam of Fig .18. 

All these solutions are valid if 

I T(x) I ~ 1 , for 'V x e [0,1] , 

these b1equalities 1nust be checked at each instant t. 

In our solution we have asswned that the hinge is located in the midpoint 

of the beam. The calculations show that also other hinge locations are 

possible, but the location x = 0. 5 is preferable, since in this case 

deflections are the biggest. 

There are also some limitations, for which the solutions presented in 

this chapter are valid. First the impulse l!llst be so big that the plastic 

deforrrations take place. Secondly the thickness of the beam should not be so 
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stTall, that the beam would loose its stability in the range of elastic 

defamations. These limitations have been discussed in the paper by Lepik 

( 1989 b). It has been shown that the initial velocity of the striking ffi9.SS 

nust fulfill the inequality v < 2r'2(h/l) ; in the opposite case we shall have 

more than one hinge in the beam. For such problems our method of solution is 

difficult to use, since the number of hinges and their locations nay cl:ange 

during the motion. 

It would be necessary to check the theoretical results, obtained in this 

chapter, also experimentally . Unfortunately all experimental data, which are 

known to us, belong to more slender beams, for which the loss of stability 

takes place in the range of elastic defamations. Nevertheless we could quote 

here the paper of Sugiura et al. ( 1985) . To our opinion experimental and 

theoretical results of this paper ( see e.g. Fig. 5) confirm our conclusion 

about the existence of multiple impact. 
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