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ABSTRACT: Hollow-core slab units are widely used as decking systems in Finland. 
They were originally designed to be supported on walls, which provide a non-flexible 
support. In such cases the web of the slab is subject to a vertical shear stress and a 
longitudinal normal stress, caused by the shear force and the prestressing force of the 
slab, respectively. These slabs have increas ingly been used lately supported by beams 
and girders, which causes the shear failure condition to be met on much lower load 
levels than is the case when they are assembled on non-flexible supports. 

This paper deals with the failure condition of concrete when two shear stresses and 
one normal stress are app lied to the web of the slab. The failure condition of N.S. 
Ottosen is used, because it is well app licable to different stress states. The results are 
expressed as scaled with respect to the tensile strength of concrete. 

INTRODUCTION 

Prestressed hollow-core slabs are a common part of decking systems, and are 

nowadays being used increasingly in composite floors. When assembled on beams, 

a portion of the slab becomes an effective part of the beam cross-section and the slab 

becomes inevitably affected by the composite interaction between the beam body and 

the slab units after the groutings and other concreting has been finished and the 

concrete in the joints has gained strength. 

For al l loads acting after the interaction ability, the web of the slab is affected by 

an add itional transverse shear force component, due to the longitudinal shear flow of 

the composite beam, which balances the changes in the normal stress resultants in the 

direction of the beam axis. The shear flow of the composite action must be transferred 

through the web sections of the hollow-core units (Fig. 1) and thus the stress state of 

the webs of the slab is governed by two shear stresses, one due to the shear force of 

the slab and the other due to the shear flow of the beam. As both of these tend to 

increase the tensile stresses in the web, the failure condition is met at an earlier stage 

of loading than would be the case if the slabs were supported on non-flexible surfaces. 
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Fig. 1 Shear forces acting on hollow-core sections: 1) vertical shear due 
to slab loading, 2) longitudinal shear flow due to composite 
beam behaviour 

It is not the purpose of this paper to consider the theory of composite beams, but 

it can be stated that composite behaviour always ensues when at least one interface 

can be found in the cross-section of the beam where the strains of the interacting parts 

are compatible (i.e. they are equal or the difference is known and is smaller than that 

caused by free slip). 

FAILURE CONDITION OF CONCRETE UNDER MULTIAXIAL STRESS STATE 

The failure of concrete is governed by the state of the stresses in it, one of the most 

versatile failure functions being that developed by N.S. Ottosen /1/. This is expressed 

in terms of invariants of the stress state, and thus the invariants must be determined 

from the principal stresses or directly by means of stress tensors. The normal stress 

tensor yields the invariants 110, 120, 130 and the deviatoric tensor yields the invariants 

ha, ha /2/. 

The failure function /2/ is normally written as 

(1) 

where the function A, depends on the deviatoric angle e (for the essentials of octahedral 

stress theory, see /2/). 
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1 
A = K1 cos{- arc cos(K2cos 38)} with cos 38 ;:::: 0 

3 

;n; 1 
A = K1cos{-- - arc cos(-K2cos 38)} with cos 38 ::; 0, 

3 3 

(2a) 

(2b) 

(2c) 

A, B, K1, K2 are parameters that are calibrated so that the following four failure 

states satisfy the criterion: 

uniaxial compressive strength I fc I, 
uniaxial tensile strength given by the ratio rr = fc! lfc I, 
biaxial compressive strength lf2c I, when two equal components o2, o 3 

act on a plane stress state, 

a failure state at the compressive meridian 0 0 c/lfcl, •oc!lfcl· 

The last condition involves the invariants 0 0 ct and •oct 

(4) 

Tensile stresses are considered positive and if the principal stresses are applied, they 

are always arranged so that o1 ;:::: o2 ;:::: o3 holds good arithmetically. 

Five sets of parameters can be readily applied to the failure function. These are 

based upon the experimental data found in references /1/, /3/, /4/, /5/ and /6/ (the 

parameters based on /5/ and /6/ are also summarised in reference /2/). 

Table 1: Parameters of the failure function of Ottosen 

fcJfc A B K1 K2 

0,087 1,2259 3,3699 11,9298 0,9914 /1,3,4/ 
0,121 0,8653 2,6322 9,6653 0,9801 /1,3,4/ 
0,145 0,6252 2,1386 8,1620 0,9647 /1,3,4/ 
0,121 2,1868 2,8460 9,1854 0,9962 /5/ 
0,121 1,4426 2,7148 9,4710 0,9900 /6/ 
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DETERMINATION OF THE INVARIANTS 

We will now discuss the values of the invariants of the stress state in the case when 

two shear stresses a13, a23 and one normal stress a11 are applied to the concrete (fig. 

2). Following the eigenvalue procedure for the dermination of the principal stresses 

a1, a2, a3, 11a is found to be equal to a11 . Now, as aoct = a11/3, the deviatoric stress 

state, in which the diagonal components sii are 

yields the invariants ba, ha 

(5) 

(6a) 

(6b) 

When the failure condition is applied, it is relevant to use relative values for the 

stress components, proportioned to the tensile strength of concrete, fct 

Fig. 2 

'Yfp = a11/fctJ 

'Yfhc = a13/fct' 

'Yfvl = a32/fct· 

1 Slab ax-is 

""" 2 Beam a.zis 

Stress components for failure consideration 

(7) 
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It must be noted that the normal stress a11 is taken to be negative when 

compression is considered. For convenience, the following abbreviations are used 

when applying the failure function 

F1: = v'J;"Jfc = r~nv12 + YJp2/3, 

F2 = ha3121fct3 
= (YJh/ + ni + YJp2/3) 312, 

F3 = lJJfct3 = 2YJp3/27- 2Yjp'YJvi2 + 'YJP'YJhc2· 

These allow the failure function to be written as 

(8) 

(9a) 

where A. is the same as in equation (1) and the angle e is calculated briefly from 

(9b) 

A short code for a computer program was written for use with equations (7) ... (9) . 

While a11 (or YJp) was kept constant, different sets of 'YJho YJvi that satisfy the failure 

condition F(aij) = 0 were studied. The results are shown in the diagrams of Fig 3, for 

which the following data were used: 

rr = 0,074 (= 1/13,5) 

parameters A, B, K1, K2 according to Table 1, row 5. 

DISCUSSION 

As can be easily seen from Table 1, the parameters applied in Fig. 3 are not 'exactly 

valid', because the ratio of the uniaxial strengths rr does not belong to any of the rows 

of Table 1. It is not possible to obtain the parameters connected with rr = 0,074 

easily, because the exact points required in the failure condition (i.e. the biaxial 

strengths) are not obtainable using simple test equipment. 
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Fig. 3 Shear failure curves for different values of the normal stress a11 

At boundaries, where 1'/vl = 0 or 1'/hc = 0 the calculation repeatedly yields 

values 1'/hc = 1,32, when 1'/vl = 0, or vice versa. Consequently the curves in Fig. 3 

were scaled with respect to the maximum stresses of the boundaries. All the time the 

compressive normal stress 1'/p is non-zero, it must be noted that it is correct to 

obtain values of 1'/vl > 1 or 1'/hc > 1 if only one shear stress is applied. In any case, 

in order to reach a more universal and conservative solution, it is better to scale all the 

values to give strengths 17 ::; 1. 

The innermost curve in Fig. 3 also deserves special consideration. For this diagram, 

the normal stress 1'/p = 0, and thus the curve must be symmetric with respect to a line 

drawn from origin with an inclination of 45 degrees. It is seen that this condition is 

satisfactorily met. The outermost curve represents a failure state when there is 

considerable compression applied together with the shears. Because the curves 

for 1'/p = 1 and 1'/p = 1,1 are quite close to each other, it can be assumed that the 

outermost curve approximately represents the failure envelope for all stress cases 

1'/p > 1,1. 

The failure curves are straightforward to use. Failure in pretensioned hollow-core 

slabs takes place in a region where there is always some prestress present. for a good 
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approximation, it is assumed that an average of 'Y}p = 0,25 .. 0,3 gives a sound, 

conservative basis for any calculation, although it has not been possible to check these 

considerations against representative test data, and only a few basic checks have been 

made. Further verification and any calibration required will follow as soon as a 

satisfactory amount of test data can be collected. 
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