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Summary The opening of vertical cracks and dry joints may by 
linearization be reduced to local dilatations and rotations 
of the centroid axis of the beam. The contact analysis for 
joints or cracks of beams with finite crack- spacing reveals 
that the positions of the rotation axis, the compressive 
force and the centroid of the crack volume comply with the 
known rules concerning beams with infinitesemal crack­
spacing if the tendons are unhanded. This renders possible 
simple graphical methods to determine the positions 
mentioned, of beams with various cross - sections and provide 
information about the relation between the dilatational and 
rotational parameters. Also the stress distribution and the 
initiation of longitudinal cracks of the beam block is 
investigated. Estimates of the location of the longitudinal 
cracks are deduced. Some of the theoretical r e sults are 
compared with corresponding tests with post- tensioned 
segmental beams with dry joints. 

1. Introduction 

Research concerning the elastic contact problems of 

cracked beams started in the first half of this century. The 

first investigation carried out by H. M. Westergaard ( 1933 ) , 

was based on the use of stressfunctions in polar 

coordinates, which led to an approximately parabolic 

stressdistribution in the compressive zone of the cracked 

section [1) . Among other investigations worth mentioning is 

the work led by P. J. Vasiliev 1970- 81 where the contact 

problem of the cracked section has been solved by using 

Greens functions [2). For beams with rectangular cross­

section and unhanded tendons graphs of the s tructural 

quantities where given. 

At the chair of structural mechanics of Tampere University 

of Technology, these problems have been investigated by a 

different approach using the extremum principles of 

stiffness [3]. The total state of stress and strain has by 

superposition been separated into the state, corresponding 

to the uncracked beam, and the state induced by the edge 
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effect of the cracks. Furthermore this approach make s it 

possible to incorporate the contact theory into the 

framework of the classical theory of bending of reinforced 

concrete beams with zero tensile stresses. 

2. The non-monolithic elastic beam 

We consider an elastic cylindrical beam with straight 

tendons , occupying a volume V = LA with span L, and vertical 

dry joints o r cracks in cross - sections Ayr which divide the 

beam into a sequence of segments (Fig la ) . The load p* 

acting on external surface r e induces then an additional 

state of stress (a- a0
) and strain e, the resulting state 

being {p, a, u, e, -y} . Here p (x,y,z ) = {ax,'Ty' 'Tz}T stress­

vector in cross-section A(x ) , and u (x,y,z ) = {ux,uy,uz }T 

displacement vector. The discontinuity [u)=llv(x,y,z) -llv_1 
(x,y,z ) defines the gap vector ~ in Av· 

1 ) 

a0 is the initial prestress of the beam, i,j,k are unit 

vectors in principal directions x ,y, z of A. If the beam 

would remain uncracked, the same load would induce a state 

{pe,ae,ue,ee,O}. The s uperposi tion of the states of the 

monolithic beam {pe,ae,ue,ee } and the edge-effect of crack 

{ph,ah,uh,eh,-y} gives 

{p, a, u, e, -y} 2 ) 

If {u', e', -y'} is a possible kinematic state and {p" ,a"} 

a state of equilibrium induced by the load p* on re, 

there holds because of P "v- 1 , v(y, z ) -p"v ,v- 1 (y ,z ) ; 

[u ' (y,z )l = 'Y'v,v- 1 on Ay and Greens theorem: 

J p*·u 'df = J a" . . e .. 'dV + Z.J p "·-v'dA• re v ~J ~J A , ' 2, ) 

where p" ·y' =p" v - 1, v''Y v, v - 1. The generalized cross-sectional 

forces (normal- and shearforce N,Q, moments M) define a 

vector R = {N,My,Mz,Qy,Qz,Mx} whose components are 

63 



3) 

j; 3 I ) 

g 5 = k; g 6 = yk - zj 

The generalized displacements ( translations U, rotations 

~)of cross-section A(x) form. a v~ctor U={Ux,~y'~z,Uy,Uz,~x}. 

Using the state of stress {p~e,u~e} of an infinite uncracked 

beam subjected in A(x) to only one component Ri = 1, 

denoting Pie= gi, Ek/Ec = nk we define component ui by: 

with: 

Fig 1 

a) 

PT-----~------,1 ------~,------TP 
i I I :--

a, b, 

1 I I 1 

: 9Q------r------~ 

C) 

Linearized 

1tzl 

I 
I 
I 
I 
I 

4 ) 

4 I) 

We subject the 

by Ri = 1 and the 

get by eq. 2') and 

beam to a state of eqilibrium uie induced 

state {u,t:,-y} induced by load p*. Then we 

using twice 

and p* = P*e on re the mutual 

the end faces: 
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Betti's rule due to p0 = 0, 

generalized displacements of 



k k : k and fvcr · .kE . . dV=fv ( cr . . - cr • • 0 ) E· . dV=fr p*·u df =1 cr • • E . . dV 
~ J ~ J ~ J ~ J ~ J e ·v e~ J ~ J 

t.U k 
e 

6 ) 

Lemma I. The generalized mutual displacement of the end 

faces equals the sum of respective displacements of the 

monolithic beam and the corresponding work at the cracks and 

joints. 

Compleme ntari t y [3] requires with Jg~t.u0dA = 0 ; i = 1 , ... 6 

u ( x ,y, z ) =~ ( giuie ( x ) +giuih ( x )) +t.u0 7 ) 

The dila t ation v = t.u 1 a nd respe ct i v e mut ua l r o tations 

w = t.u2 w t.u3 o f the e nd faces o f the beam are y , z 

v fAg1 ·udA = ve+vh = ve+~Vh/A; (Vh = f A'YxdA ) 

wy fAg2 ·udA = wey+why = wey+~zhVh/ Iy; { zh Vh= f Az ·-yxdA ) 8 ) 

wz fAg3·udA = 00ez+00h z = wez-~yhVh/ Iz; (y h Vh=f Ay·-yxdA ) 

where ~Vh i s the ga p volume a nd ~zhvh, ~yhvh i ts mome nts 

with respe ct to the pr incipa l axes. Es pecia lly in a beam, 

wher e N = 0 a nd v e = 0 t here holds , i f t he end faces remain 

pla ne 

9 ) 

He nce: 

Corollary. The total elongation of the centroid axis of a 

bent beam is proportional to the crack volume ~Vh and 

independent of the depth of the crack. The additional mutual 

rotations why' whz of the end faces caused by the gaps are 

proportional to the moments of the gap volume ~zhvh and 

-Zyhvh respectively. 

Fig 2a , b s how the linear de pendence of vh on Vh 

zhvh of loaded p r estr e ssed gr ani te beams with 

and wh on 

unhanded 

tendons and one dry joint in the middle s ection by measur ing 
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·, 
15 a 

., 

10 

10 

the elongation vhd and whd on a 

corresponding gap volume quantities 

[4 ) . 

length ld and the 

Vh, zhvh of the joint 

Considering a 

subjected to 

beam 

a 

with 

constant 

constant crack spacing 1 = Ad 

compressive force P with 

-ez ,the mid sections bv_1 ,bv 

(Fig 1b ) . Hence extension 

eccentricities Yp -ey, zp 

between two cracks remain plane 

vex (y,z ) + vhx (y,z ) = v + wyz - wzy 

ve+weyz - wezYi vhx (y,z ) = vh-whyz+~xy; 

10 ) 

10, ) 

where ace. to the bending theory of beams and conditions 9 ) 

ve = -Pd~/EA; wey = Pd~ ez / EIY; we z = -Pd~ey/ Eiz; lOa ) 

vh=Vh/A; ~y=zhVh/ Iy; wh z = -yhVh/I z lOb ) 

Fig 2. 
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The deformation vx may therefore be separated into the 

monolithic deformation vex and the effect of the joint vhx' 

which actually implies that the two halves of the period are 

subjected to deformations vex / 2 and they are separated by a 

linear discontinuity 1x = vhx at the joint. 

The real gap width ~x ( y,z ) can therefore be substituted by 

a linear distribution (Fig lb,c) . 

11 ) 

determines the axis of the 

additional rotation wh caused by the crack. According to 

this scheme the displacement uh of the half blocks 

corresponds to rigid body motions with interpenetration 

above axis wh at z'h (Fig lc ) . This corresponds to an 

analogous stress distribution in the monolithic beam 

induced by a compressive force P at Yp = - ey, zp = - ez 

12) 

3. Deformation parameters and stiffness of block 

The extensions and rotations depend on P, ey, ez and ~ 

= - Pda / EAk z y 

The three parameters ~' ay, az depend on 

13 ) 

the relative 

kern- distances ~' mz (mj ej / kj ) and the ratio A = 1 / d. 

They are not independent because v, wy, wz are derivatives 

of the strain energy W which is a 

function of N, ~' Mz. 

second degree homogeneous 

From relations cJW/ cJN = v · cJW/ cJM.__ = w • cJW / cJM = w • 
' Y Y' z z' 

there follows 

Because the state {ph, crh} corresponds to no external load 

the strain energies can be separated 
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16) 

where 

The relations 15) hold separately for ue,~e,Be and uh, ~h' 

Bh since B = Be + Bh; ... ui = uei + uhi. The ue, ~e' Be are 

determined by eq. lOa) \':hereas expressions lOb) become 

and the interpenetration (Fig lc) of the rigid blocks at Yp' 

zp are according to 10) 

The parameters ~h,uh,Bh can be determined either 

by solving the contact problem for the resulting state 

{p,rr,u,e,~} and then obtain ~h···~ from the differences ~h 

= ~ - ~ e ... Bh = B - Be, or by confining the problem 

exclusively to the state {ph'~'uh,eh,~}. In this case the 

block halves of the period are loaded at the joint, where ~ 

> 0 by known forces Phx= - rre, the end faces bv-l' bv 

remaining plane. The work carried out is according to lOb) 

11) 

confined to section av since fPh·uhdA = 0 on Abv' Phx = rrhx 
being an equilibrum distribution. 

A more transparent geometrical interpretation provides the 

concept of stiffness. The stiffness of the period can be 

defined as the ratio of the load P to the load-displacement 

up. The total stiffness D and the interpenetration stiffness 

Dh are 

D EA/dB; 18 ) 
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These quantities are defined either by an admissible state 

of stress {p 1 1 
1 5 11

} 1 which include the non-tension condition 

rrx < 0 at dry joints and the stress energy W( rr 11
) (eq . 14, 

15) 

19) 

or by an addmissible state of strain {u' ,e' ,1'}, which 

includes the impenetrability condition 1x ~ 0 at the joint: 

If in the structure the unloaded state is devoid of 

initial stress o• and gaps then, according to the extremum 

principles of stiffness D(rr'') provide lower bounds to the 

actual stiffness D and D(e') upper bounds to the actual 

stiffness D [3] Hence: 

D(rr'') < D ~ D(e'); 

5" > 5 > 5' •1\.''> 5 >5' _ - , -n - h - h 

The lower bound solution based on {p'' ,a''} 

upper bound 5h'' whereas the upper bound solution 

19 I ) 

19 I I) 

provide an 

based on 

{u' ,e' ,1'} provide a lower bound 5h' to 5h because of eq. 

18 ) . 

The functions ~e(~,mz, A) ... 5e(~,mz,A) are all pro­

portional to the slenderness A ace. to eq. lOa ) 

Closed expressions for parameters ~h' ' .5h cannot generally 

be obtained. The dependence on A is rather complicated with 

one expection where the compressive stress-distribution in 

the cross-section is partly linear. This materializes in a 

beam with very dense crack spacing A -> 0 in accordance with 

the classical theory of bending of reinforced concrete 

beams. In this exceptional case the contact problem may be 

solved by elementary means. We get if A -> 0 with ~· = ~e+~~ 

; ... .. ... , 6~ = 5e+5•h . 
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(1.0 

s 20a) 

In the following we confine ourselves to segments with 

unbonded tendons and accordingly to the deformations of the 

net area ~ of the joint. For a rectangular section the 

quantities ph ... 8h are with my = O: mz = m 

Ph= ( lml -1 ) 2 I ( 3-lml) 2 : 

. 3 
8h=(lml-1) /3(3 - lml) 20,,) 

If A t 0 approximate solutions are sought by variational 

methods [6]. For a block av - av+1 with narrow rectangular 

cross section a lower bound solution is obtained by the 

stress-function expansion 

0 21) 

with ~=2z/d, ~=2x/l, s=1 ... n, and boundary conditions 

satisfying the equilibrum conditions at z = ± d/2 and z
0

, 

the integral conditions and stress-conditions at . x = 0, 
± 1/2 

0 21,) 

The solution is 

Kantorovitsh's method 

obtained by 

the stress 

minimizing ace. 

energy by variation 

to 

of 

An upper bound solution is obtained by a 

admissible deformation-field {uh',eh',-y'} of 

av-bv clamped without friction to plane x = 

70 

kinematically 

a half-block 

0 (Fig 3) and 



u ' h =~ ( A ( ~ - 8 cos ( ~Tix / l )) +G ( ~ ±8 sin ( ~Tix / l )))/ 2+ 
X~~~ ~~~ 

u'h =~ ( A ( 2~ / ~TI -~ sin ( ~TIX / l )) +S ( ~TIX / 1 -sin ( ~TIX / l )) -
Z ~ ~ ~ 

This field satisfies the condition at x= O: u ' = -y / 2 > 0 hx -
and at x = l / 2 : uhx' = -y / 2. Here -y = ~A~ > 0; 

~~ -

-y = ~A~~; a~ = ~~ - 1~ 
distribution on bv. The 

of the potential energy 

which represents an equilibrium 

solution is obtained by the minimum 

With respect to the constants A G B C D E 
~' ~' ik' ik' ik' ik 

22 I ) 

Another upper bound solution is obtained by the finite 

element method where the displacement field between 

neighbouring elements has no discontinuities. 

a ) Fig 3. Use of {uh,eh,-yh} 

for an upper bound solution 

From these solutions upper bounds Bh''and lower bounds Bh' 

for parameters Bh are obtained, with corresponding values 

for ah,~h and for varying values m = - zp/ kz along the 

symmetry axis of the cross - section. Bh and ~h assume only 

n on-negative values whereas ah:s sign depends on the 

direction of the bending moment (Fig 4 ) . Of special interest 

are the parameters dependence on the slenderness A, For 

small values we have at given mz a linear relationship 

according to f ormulae 20) ,2 0b ) . Because the edge effect of 

t he j oint vanishes at a certain distance from the joint if 

A ->00 the parameters approach constant values (Fig 5 ) . For 

a rectangular section we have approximate values 
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Fig 4. Deformation parameters of dry joint of T beam. 

with a ~ 0 .74; r ~ 0 .55 

With increasing eccentricity m the difference between 

upper bound and lower bound parameter-values increases1which 

in some cases leads to a decrease of the parameter-values of 

the upper bound solutions. An estimation of the limit value 

of Sh when A - > is possible taking into consideration that 

Sh is proportional to Wh= fw(rrh)dV, where w(rrh)= rrhijehij/2; 

aw/arrhij = ehij" Therefore if the length 1 of the period b 

v-l-bv is increased by dl we get with aro/al = ehijarrhij/al: 
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but fv(aaij/al)ehijdV = fAb(al11/al).uhxdA - fAval11/al·-ydA = 

0 since on the endface bv uhx is linear and aph/al is an 

equilibrium distribution. On ~ aph/al ~ 0 only where 1 = 0 

because of -y:s continuity. Hence dWh = dlfwdA~O, a&h/al~O. 

Thus the parameter &h increases and the stiffness D 

monotonously decreases with increasing >.. at given 

eccentricity of the load P. 

In Fig. Sb the parameters of a T beam are calculated by 

the finite element method, which provide lower bounds to the 

parameters &h. With increasing length the parameter values 

are decreasing if >.. > 1 which implies an increasing error. 

The optimal values are therefore the highest values attained 

approximately at >.. 1. The parameters ~h and ~h seem to 

follow the same pattern as &h with &h'' - fi'h ~ 0. A 

sufficient condition for this is ~··h-~'h ~ l~"hl - l~'h l ' 

Then from relation ~·· -&h' > 0 and eq. 15) there follows: 

~· ,h _~,h ~ 0; l ~"h l - l~'hl ~ o. 

4. Smoothed stress- and gap- distributions at dry joints 

Next we investigate the effect of the slenderness >.. of the 

period on the distributions ax, 'Yx at the joint. The 

centroid H(yh,zh ) of the gap volume Vh is determined by the 

parameters ~h'~h if the centroid ey,ez of P is known (eq. 

9,10). 

The zero-line of -v(z,y) 

the principal axes at 

l(H) 

Y 'a= .2 1 , .2 1 - ~ z yh; z a = -~ y zh 

In the 

classical 

limiting 

theory of 

case >.. -> 

reinforced 

23) 

0 intersects 

23, ) 

0 corresponding to the 

concrete the continuous 

compressive stress distribution a(y,z) 2 0 is linear on a 

part A_ of A. Only the part above the neutral-line l(a_)=a 

=0 is strained by E = a_/ E. If we consider a symmetric 

period bv-l'bv the mutual displacement of the endfaces is vx 

= exl = la_/ E. Starting from l (a_) we have a gap­

distribution "f0 (y,z) ~ 0 linear on A+ =A-A_ ( Fig 6 ) . 
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OS 

Fig. 5 
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lowe r bound solution 
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Ritz 
FEM--+-

Uph= ~~ ~h 

k = 2iy2/d 

m= e/ k = 1.40 

Uph = E~ ~h lm,,c1) 

"h=E~ ~hlmz .l1) 

wh=-p~otlmz~) 
EAk • 

---:""-- FEM ca lculated 

---CORREC TION 

Dilatation parameters ~h' rotation parameters ah 

and interpenetration parameters 8h versus 

slenderness ratio A, 



r\->0 p 

Fig. 6 

s 
/~ 

• I ~,----,___:>,---! _t .1 
~~0 

\'-(Z)= !'max a(z) 
amax-r~max 

. H~= 'l!max 
Q c- Zo 

The symmetry planes bv- l'bv remain plane. The parts below 

1 ("1° ) remain unstrained . Hence vx+ = ')'0 below l ( rr_ ) is an 

extension of the plane vx-· The mutual displacement of 

planes bv- l'bv is therefore a linear distribution over A 

24 ) 

to which corresponds a stressdistribution 

25 ) 

where rr: = E')'0 / l is the fictitious stress induced by the 

gap. ~ represents thus two stressblocks: the real 

compressive block a with resultant P = - Pi (P ~ 0 ) at point 

P = {yp,zp}, and the tensile block rr+ with resultant H = Hi 

(H ~ 0) , at point H = {yh,zh}. The fictitious force-void 

couple ( P,H) induces linear distributions rre and d"' = Evx / 1 . 

where H =EVh/dA=P~h; yh=cyahz / Ph; zh=cz~hy/ ~h. Superposition 

gives 
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which is induced by a force Q = ( Ph - l )Pi acting at 

on line PH. The zero lines l ( 0"0 ) ,l ( O"e ) ,l ( cr'Y ) 

mappings, point to line, Q - > l (Q) ; P - > l (P ) ; H 

l (Q) determines the axis of local rotation ~ 

27) 

- > l (H) . 

28 ) 

Because of the similarity of the expressions for ae (y,z ) 

and ~ ( y,z ) we have the following dual relations known from 

the theory of eccentrically loaded elastic beams. 

i ) If P moves along line a
0 

through the origin 0 then the 

neutral line l ( P ) experiences a translation in the same 

direction. 

ii ) If P moves along a line ap outside the origin 0 the 

neutral line L (P ) turns round a fixed point P' (ap ) 

which is the point of action of P whose <re-distribution 

has neutral line l (P ') = ap. 

i ') If centroid H of Vh moves along line ah through 0 then 

axis wh = l (H) experiences a translation in the same 

direction. 

ii ') If H moves along a line ah outside 0, the axis wh = 
l (H) turns round a fixed point H' (ah ) which is the 

centroid of gap volume V' h whose 'Y (y,z ) distribution 

has zero line l (H' ) = ah. 

If we consider corresponding collinear points Q,P,H the 

neutral lines l (P ) and l (H) have common point S in the 

projective plane TI, Hence cre ( S) = 0; cr'Y( S ) = 0. But because 

of 27 ) we have also <T
0 ( S ) = O"e ( S ) + O"; (S ) = 0 . Therefore if 

we denote the points of intersection of the axis PH with 

l ( P ) , l ( H) and l (Q) , P', H' and Q' respectively: 

iii ) The neutral lines l (P ) , l (H) and l (Q) have common point 

S which is the point of action of Q or P or B whose 

neutral line L (S ) is PH and contrarely, if Q, P or H 

are moving along PH, the neutral lines l (Q) , l ( P ) and 

l (H) respectively are turning round s. Furthermore 

l ( P ') = SP; l (H') = SH; l (Q' ) = SQ ( Fig 6 ) . 
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Because the point of action of P and H are independent of 

the magnitude of the force - void couple ( P,H ) , there is a one 

to one mapping H = T (P ) of points p c· A to points H A in the 

projective plane. Compressive force P at point P induces 

tensile force H = -~h ( P ) P at point H. Since a~ +a: generates 

a plane ~ ( y,z ) induced by force Pat P and Hat H, then ( -~ 

_ ) +( -a~) generates a plane -~(z,y) induced by load Pft = 

- H = ~h ( P ) P at H, and force Hft = -~h ( H ) P" = -P at P. Hence 

T (H) = TT (P ) = P; TT I; 1 28 ) 

Since Vh = Pd~h ( P )/ E we have 

iv ) If compressive force P with centroid at P induces gap 

volume Vh with centroid at H then force P at H induces 

gap volume V'h at point P (Theorem of reciprocity ) 

From this follows 

v) If P moves from P', a point on oK, the conture of the 

kern, to a point P on the conture oA of the convex hull 

A of A, Q moves from Qk- = P' through infinity to Qk+ 

on oK, and l (Q) moves from the tangent of aA. through 

H' to a tangent point Qk+ on oK. L (Q) = w• moves from 

l (Qk_ ) = l (P' ) to a tangent l (Qk+ ) of oA through P. 

v' ) If H moves from point H on oA to a point Hk = Qk+ on, 

oK, the axis wh = l (H) moves from a tangent of oK 

through P ' to a tangent through P on oA (Fig. ld ) . 

A numerical comparison shows that the stressblock a for 

different A-values doesn't differ much from the linear one 

on A of the classical theory 

relations between 

closely approach the 

same illy' mz. Hence 

the deformation 

corresponding 

with A -> 0 . Also the 

parameters ah, ~h' &h 

values for A -> 0 with 

29 ) 

This means that the results concerning ax obtained for 

A - > 0 can by induction be extended to values A # 0 . 

Relations 29 ) indicate that for given eccentricity of load 

P the centroid of Vh and the lines l (P ) , l (Q) and l (H) are 

approximately independent of A and can be considered as 

invariants together with their points of intersections P ' Q' 
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Fig. 7 Compressive stress distribution <-1. and geometric 

determination of relative gap width Pc(z) of dry 
joint. 
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and H' with PH. In order to determine an approximate 

distribution ~c affine with rro+ of the real one ~ we can 

start from distribution 11 ) . 

~ ( y,z ) = Pd~h ( y,z )/EA 30 ) 

where ~h ( y,z ) is a linear function of y,z 

31 ) 

Especially ~h ( O,O ) = ~h; ~h ( yp,zp ) = - Bh. The smoothed gap 

width ~c at the joint is therefore a linear distribution on 

A+ 

32 ) 

which is determined by the ~c -plane spanned by the lines 

1 ( Q ) and ~h ( 1 ( P ) ) [ 4]. 

On HP ~c is determined by the ~c line through zeropoint Q' 

and the point Ph (P' ) . 1 ( PH ) is determined by the line 

through zeropoint H' and point ~h ( O' ) through 0' = PHn SO, 

( Fig. 6 ) or by the straight line through ~h ( P ) = - Bh at 

point P and ih (O' ) at 0'. If the line passes through the 

origin 0 then ~h ( O ) = ~h. For some symmetric profiles the~ 

distribution along the vertical symmetry line y = 0 has been 

calculated. In Fig 7a the distribution ~c is determined for 

different ~-values by using for ~h the line through ~h ( P ) 

and ~h ( O ) . ~:s zeropoint is very close to the theoretical 

point H'. In Fig 7b the theoretical point H' is used. The 

diagrams for rrx and ~ calculated, show good agreement with 

the linear values ~- and ~c although the difference between 

calculated~ and smoothed ~c increases with growing ~.but 

the difference at the maximum gap width does not exceed 7 % 

when ~ = 2 which actually corresponds to infinite ~ . 

Also the reciprocity relation between the position vectors 

of Hand P seems well established as is seen from Fig 9. If 

the cross-section has double symmetry the distance ~z 

between H and P remains approximately constant. 
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various slenderness ratios A, 
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The numerical comparison carried out, confined to 

symmetric profiles, covers only in part the general theory 

developed. Nevertheless they show conclusively that in the 

most important case of symmetrical profiles with force-void 

line in the axis of symmetry the asymptotic approach to the 

classical theory with ~ -> 0 provides a satisfactory base 

for the evaluation of stress and gap width at the joint . 

5. The longitudinal cracking at dry joints 

The stress-distribution of a block with rectangular 

profile between two dry joints loaded by a compressive force 

P is shown in fig lOa. The rrx distribution start at the 

end faces as compressive stress close to the linear 

distribution ~ < 0 approaching with increasing ~ at the 

middle part of the block the distribution rre of the 

monolithic beam. At the end faces appear tensile stresses rrz 

with a maximum below the limit line rrx = 0. This maximum 

increases with ~ from 0 at ~ = 0 to a limit value rrzmax when 
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Fig. 10 a )Stressdistribution 

in segmental block with 

rectangular cross-section. 

b ) Dependence of relative- 'o 

CI • 
xm~n,uxmax' 

uzmax on 
eccentricity mz. 

10 

- -~. lowerbound Solufton Oi"} - a 
~ a· FEH 

ii:.~max 

~ > 2. u rna increases with increasing eccentricity m and is 
- Z X · 

considerable greater than the maximum tensile stress uemax 

at the lower edge of the block. The maximum values of the 

compressive stress uxmax coincide with those corresponding 

to ~ = 0 independently of the solutions used. A considerable 

difference occurs between the uz values of the upper bound 

solution and two lower bound solutions (Fig lOb ) . The uz 

stresses give rise to longitudinal cracks which starts from 

the vertical joint. In some cases they are initiated 

earlier than the vertical cracks caused by the bending of 

beams (Fig 11 ) . The predisposition to longitudinal cracking 

is very pronounced in prestressed beams with unbonded 

tendons. In segmental beams with dry joints an important 

question is the location and extension of possible cracks. 

This location can be determined by the lemma: 

Lemma III: A possible crack of mode I will be initiated at 

that location of the body where a minute cut induces the 

greatest drop in the potential 

therefore also the greatest drop in 

structure. 
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Proof. We consider a non- monolithic uncracked structure 

with dry joints rk and uniformly distributed microcracks, 

loaded by external loads p*, in which we make a minute 

c ut fh ( r ) = a·As normal to the principal tensile stress 

at r. The state {p,rr,u,e,1} is separated into the states {p' 

e· .. e' e'1' e } before cracking and {ph ... eh,1h} induced by the 

cut: {p ... 1} = {p' e· · ·1 ' e } + {ph· · ·'Yh} 

Fig. 11 Longitudinal crack initiated at dry joint of 

prestressed segmental granite beam. 

The potential energy of the uncracked structure is then 

33 ) 

~Jp*·u' edf. The potential energy after cutting 

* * 1r 1 = W ( rr ) - Jp ·udf = -~Jp ·udf 

provid e d t h e fricti on law excludes irreversib le effects and 

t h e wo rk on r k and fh : p' e'Y ' e ' P''V = 0 . Hence 
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33 ,) 

where ~W = W( rr'e+rrh ) - W( rre' ) = W ( rrh ) -frhPh~e'df. Since rrh' Eh 

are permissible states we get using eq. 3 ) 

~w = ~ ( frk ( Ph~'e-P'e~h ) df + frhPh~hdf ) 34 ) 

On fh ( r ) the stress Phx (x,r ) -P'e (x,r ) = -rr'e (x,r ) induces 

a singularity at the depth . x =a. Therefore ace. to linear 

fracture mechanics [5] 

34 ) 

Because of the smallness of the cut,ph and ~h differ on rk 

from zero only where rr'e,~'e are very small. Therefore the 

first integral can be neglected compared with the second. 

Hence putting rr ' e (x,r ) = rr'e ( O,r ) g ( x ) 

The integral depends also on W(rrh ) since ~ ( x,r ) depends on 

the stress intensity factor 

KI (a, r ) = ( ( E/ ~s ) awh/ aa ) ~ 35 ) 

Eq.34 ') therefore leads to a differential equation of W( rrh ) . 

Its solution gives 

Varying r, keeping ~s,a constant, W( rrh ) simultaneously with 

KI (a,r ) and rr ( O,r ) attains maximum, where the crack is 

initiated, from which the lemma follows. IB 

The lemma describes the situation at the beginning of 

cracking. The cracking continues then leading to unstable 

growth or it stops when the total energy U = ~ + ~s' where 

~s is the surface energy, attains a minimum with ~~ = - W(rrh ) 

ilU / ilcx 37 ) 

In mode I cracks this may happen when in compressed parts 

a state is attained where all singularities along the crack 

tip disappear. This case defines the limit state of free 

contact. Since along the crack ~s KI (a,s ) = 0, there follows 

ilW ( rrh )/ ila = 0 37' ) 
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Fig. 12 Deformation 
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Because W( cr )h increases monotonously with increasing a, it 

attains a maximum in the limit case of free contact. If we 

consider a monolithic block bv- bv_1 of a beam (Fig 12 ) 

loaded by P with constant eccentricity mz=m and make in the 

symmetry section a cut of depth a, which deminish the 

uncracked depth to dk = d -a = Kd, the released energy is 

where Bh is an increasing function of a, everywhere where we 

have a tensile stress-singularity until we rearch the limit 

state depth a
0 

= d - d
0

• If we then furher increase the depth 

a and the cut is of finite thickness we will get a 

compressive stress singularity at the tip of the cut and 

therefore the energy W( crh ) will start again to increase. We 

have in this case an inflection point at a
0

• If again the 

cut is infinitely thin it will not affect the state of 

stress and strain for values a > a
0 

because the section is a 

symmetry plane. In this case the function Bh (a) will remain 

constant (Fig 12 ) . We have thus at a
0 

only in the latter 

case where the inpenetrability condition ~x ~ 0 is not 

violated a true maximum of Bh ( a ) 
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39, ) 

Along the section av we have principal stresses ax, az 

with ax = 0 at a
0 

and ax < 0 for a > a 0 . The question arises 

where the longidutinal crack will be initiated along the 

opened joint ( Fig 13 ) . The strain energy in the uncracked 

state is 

40 ) 

If the crack developes at height z < z
0 

( z
0 

tip of gap in 

dry joint ) with lenght 1 1 we can distinguish three regions 

(Fig 13 ) : 

A with depth d and total lenght 1 - 11 . 

B with depth dk and total lenght 1 1 
C two unloaded cantilevers with depth de ~ d - dk a nd tota l 

lenght 1 1 clamped to pa rts A along line 1- 2. 

Fig. 13 

Lower bound 

solution of 

longitudinal 

cracking. 

PHASE 0 MODELL II FINAL 

An approximate solution is sought by making fictitious 

cuts along 1- 2 separating the accordingly unstressed parts C 

from the structure. Denoting dk = Kd; A1 = 1 1 / d; Ak = 1 1 / dk; 

A/Ak q; m=e / k; mk=ek / kk we get after cracking strain 

energies WA,WB and 8W=WA+WB- W0 

40a) 

40b ) 
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40c) 

The model satisfies the kinematical - and stress - conditions 

on the joint av of part B. On the lines 0- 1 the kinematical 

conditions are satisfied but the equilibr ium conditions are 

satisfied only for the generalized forces N8 , M8 . In the 

fictitious cut 1- 2 the kinematical conditions are not 

satisfied but the stresses are permissible, which justifies 

the separation of parts c. 
t::.w attains its maximum when mk = 1 with corresponding K :. 

K0 ; Ak = A0 ; ~k = 0. Indeed in this case the distribution ~x 

in B is linear, P acting at a core point . Hence 

&h ( 1 ,>..k ) =0; &h (m, >..- >..1 ) =max~ (m,>..- >..1 , K) and q&e ( 1 ) - oe (m)= 

=~ ( m ) because for body B ace . to 20a ) : up=Pl1Be (1 )/EA
0 

=1'11 &0 (mk ) / EAk; \i Ak with A0 s Ak < A since A
0 

= Min A8 , from 

which (A/ A0 )Be(l ) = B0 (m) , and max (qSe (mk ) - Se (m)) = Bh (m) . 
Since we have uniaxial compression in B the r~s~ng of the 

crack above z
0 

inside the region d
0 

does not change the 

stresses in B and A. Therefore ( ai::.W / cJK ) K0 = 0 and 

41 ) 

The above result is close to a lower bound solution. 

An upper bound solution is obtained assuming parts A being 

in the monolithic state {~e,te } parts B deform as in the 

lower bound solution and the cantilevers C remain undeformed 

and rigidly clamped to parts A along lines 1-2. W
0 

doesn't 

change. For parts A and B we get after cracking 

40a' ) 

40b' ) 

Hence 
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By the same reasoning as in the lower bound solution the 

maximum is attained when K and Ak corresponds to mk = 1 

which gives 

41 ,) 

This corresponds to a considerably smaller drop of 

potential energy ~ and stiffness D than that of the lower 

bound solution. Nevertheless both cases confirm the result 

of the stress calculation that according to lemma III the 

maximum of the tensile stresses azmax are 

bit below the tip of the gap corresponding 

attained a little 

closely to the 

neutral line at height a
0 

according to the classical theory. 

Tests confirm also this result. The stress intensity factor 

KI of the longitudinal crack are ace. to the lower bound 

solution 

and ace. to the upper bound solution 

----.. -- ! ·'- . -. - _ _I 

Thr tJ ~t l ine ·-·-· 

Fig. 14 Longitudinal cracking in stone arch (Arles,arena ) . 
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Longitudinal cracking occur also in sufficient slender 

( A > 1 ) voussoirs of stone arches. From the cracks an 

estimate can be made about the position of the thrust - line 

of the arches because the resultant must pass on a distant 

dk / 3 from the compressed edge, where dk is the depth of the 

uncracked region (Fig 14 ) . 
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