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SUMMARY: In this study a finite element method for both geometrically an Q materially 
nonlinear analyses of space frames is developed. Beams with both soliQ and thin­
walled open cross-sections have been considered. The equations of equili bri~m have 
been formulated using an updated incremental Lagrangian description. 'I'h e elements 
developed can undergo large displacements and rotations, but the incremen t .a l rotations 
are assumed to be small. The material models adopted are elasto-plastic, t e mperature 
dependent elasto-plastic and visco-plastic models with special reference to J.netals. Also 
computationally more economical formulations based on the relationship b e t ween stress 
resultants and generalized strain quantities have been presented. In the case of thin­
walled beams the torsional behaviour is modelled using a two parametric d eplanation 
model, where the angle of twist and it's derivative have independent appr oximations . 
This approach yields the average warping shear strai ns directly from the displacement 
assumptions and no discrepancy between stress and strain fields exists. 

INTRODUCTION 

Frames are common load carrying systems in engineering constructions . E ffective use 

of high strength materials and the tendency to optimazed constructions result in thin 

and slender s t ructures. Due to the slenderness and increased imperfection sensitiYi ty 

the stability problems become more significant.. The character of the load deformation 

path in the post-buckling range is important. in assessing the safety of the structure. 

Coupled geometrical and materialnonlinearities compli cate the structural analysis, and 

only numerical solutions are feasible in practical ca.set;. 

The earliest numerical analysing procedures for the nonlinear response of space 

frames were mainly based on the beam-column theory, where the effect of axial forces 

to the behaviour of the frame is taken into account, e.g. Renton (1962), Connor et al. 

(1968), Chu and Rampetsreiter (1973), Papandrakakis (1981) and Virtanen and Mikkola 

( 1985 ). In those approaches the tangent stiffness matrix is formulated using the exact 

solution of the differential equation for a beam-column. It gives good accuracy in cases 
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where the moments of inertia in the principal directions of the cross section are of same 

magnitudt>. In cases when, the axial forces art> small or the cross-section moments of 

inertia differ greatly, i.e. in lateral buckling problems , the o.nalyses of space structures 

with the beam-column elements do not give satisfactory results . 

The noncommutative nature of finite rotations in three dimensional space 

complicates the formulation of incremental equilibrium equations, capable for handling 

large rotation increments. Several studies for handling the large rotation effects can be 

found in References, e.g. Argyris et al. (1978) , Argyris (1982), Simo (1985), Cardona 

and Geradin (1988), Dvorkin et al. (1988) , Friberg (1988a, b). Argyris et al. (1978) 

have introduced the semi tangential rotation concept. In contrast to rotation about fixed 

axes these semitangential rotations which correspond to the semitangential torque of 

Ziegler (1968) possess the most important property of being commutative. Simo and Vu­

Quoc (1986) have developed the configuration upclate procedure which is the algorithmic 

counterpart of the exponential map and the computational implementation relies on the 

formula for the exponential of a skew-symmetric matrix. In this Eulerian approach the 

tangent operator is non-symmetric in non-equilibrium configuration but the symmetry is 

shown to be recovered at equilibrium provided that. the loading is conservative. Cardona 

and Geradin ( 1988) have used the rotational vector to parametrize rotations. They 

have treated Eulerian, total- and updated Lagrangian formulations . As pointed out by 

Cardona and Geradin (1988) an Euleriau approach allows, on one hand, a relatively 

simple derivation of fully linearized operators but , on the other hand these opeators 

are non-symmetric in a general case. Full symmetry of operators is obtained in the 

Lagrangian approach. Large deflection finite element formulations have been presented 

by e.g. Belytschko et al. (1977), Bathe and Bolourchi (1979), Remseth (1979). In 

these studies the n~nlinear equations of motion have been formulated by the total 

Lagrangian or by the updated Lagrangian approach. In large deflection problems of 

beams the updated formulation has been found to be more economical and convenient 

than the total Lagrangian formulation, Bathe and Bolourchi ( 1979). A total Lagrangian 

formulation does not allow an easy manipulation of rotations exceeding the value of rr, 

Cardona and Geradin (1988). Recently Sandhu et al. (1990) have used a co-rotational 

formulation in deriving the equations of equilibrium for a curved and tll'istecl beam 

element. In the co-rotational formulation the rigid body motion is eliminat.ecl from the 

total displacements. 

In all of the above mentioned studies the warping torsion has not been taken into 

account. The stiffness matrix of a. thin-walled beam seen1s t.o have been first. presented 

by Krahula ( 1967). The effects of initial bending moments and axial forces have 

been considered by Krajcinovic (1969), Barsoum and Gallagher (1970), Friberg (1985) 

and many others. Mottershead (1988a,b) has extended the semiloof beam element to 

include warping torsion of beams with thin-walled ope11 noss-section. All the above 

mentioned studies have considered linear stability problems. The effect. of pre-buckling 

deflections to the critical loads have been studied by, e.g. At.t.ard (1986) and van Erp 
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(1989). Computational tools for nonlinear post-buckling analyses have been presented 

by Rajasekaran and Murray (1973), Besseling (1977), Hasegawa et al. (1987a,b), van 

Erp et al. (1988). Bazan!. and El Nimeiri (1973) have formulated the finite element 

equilibrium equations of a thin-walled beam element. for large deflection analysis, taking 

into account also initial bimoments. The study of Rajasekaran and Murray (1973) 

includes also elasto-plastic material properties. The above mentioned studies for thin­

walled beams have utili zed the Vlasov's theory of torsion and the Euler-Bernoulli theory 

for bending of thin beams. Seculovic ( 1986) has proposed an alternative formulation 

which takes into account also the shear deformation in the middle line of the cross­

section. In this formulation the warping of the cross-section is described by a set of 

axial displacement parameters, the number of which depends on the shape of the cross­

section. It is also applicable for both closed and open cross-sections. Both Epstein 

and Murray (1976) and Chen and Blandford (1989) have suggested a formulation which 

takes into account. the average shear strains due to warping torsion. Chen and Blandford 

presented a G' 0 beam element for linear analysis while Epstein and Murray formulated 

an element capable for nonlinear problems. 

Wunderlich et al. (1986) have used an incremental updated Lagrangian description 

in the derivation of the basic beam equations from a generalized variational principle. 

They have explored the influence of loading configuration, material parameters, 

geometric nonlinearities and warping constraints on the load-carrying behaviour and 

on the bifurcation and ultimate loads of thin-walled beam structures. The influence of 

material parameters have been investigated with both h flow and deformation theories 

of plasticity. In their study the tangential stiffness matrices are obtained by direct 

numerical integration of the governing incremental differential equations and no a priori 

assumptions on the distribution of the field quantities have been made as in conventional 

finite element analyses. 

A nonlinear theory of elastic beams with thin-walled open cross-sections has been 

derived by M¢llmann (1981). In this theory the beam is regarded as a thin shell, and the 

appropriate geometrical constraints are introduced which constitute a generalization of 

those employed in Vlasov's linear theory. The rotations of the beam are described by 

means of a finite rotation vector. Computational results based on this theory have been 

presented by Pedersen (1982a,b) in which Koiter 's general theory of elastic stability is 

used to carry out a perturbation analysis of the buckling and post buckling behaviour. 

EQUATIONS OF EQUILIBRIUM 

The sum of internal and external virtual works has to be zero for a body in an equilibrium 

state. Expressed in terms of Eulerian quantities the equation of virtual work has the 

form 

f T : oDdtdv = ( tn ·buds + ( p(f- :X) · budv, 
Jv lav lv (1) 

where 8 means the variation and Dis the rate of deformation tensor, i.e. the symmetric 

part of the velocity gradient tensor L = gradx, T the Cauchy stress tensor, tn, f 
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the traction and body force vectors , u the displacement. ved.or. x the material point 

coorclinat.P- vector and p the material density. The superimposed dots denote the time 

derivative. Equation (1) can be formulated in the reference configuration using the 

second Piola-Kirchhoff stress S and the corresponding deformation measure, the Green­

Lagrange strain tensor E = (FT · F - I)/2 (F the deformation gradient tensor), i .e. 

( S: 8EdV = ( tN · 5udS + ( p0 (f - x) · 5udV, 
Jv lav Jv 

(2) 

m which H = F- I 1s the displacement gradient, tN the traction vector per unit 

reference area 

tNdS = JT. F - T . NdS = T. nds = t,ds, 

where J = det F. The virtual work expression (2) is used as a basis in the numerical 

computations . 

Solution of the nonlinear equation (2) is obtained step by step and therefore 

it's incremental form is required. It is now assumed, that the solution has achieved 

configuration C1, and the solution for an adjacent configuration C'2 is looked for. The 

incremental decompositions of stress and strain are 

2S = 1 S +as, 
2 E = 1E+..::lE, 

and the variation of the Green-Lagrange strain at configuration C'2 is 

beE)= ~eFT· 8F +8FT· 2 F), 

=beE)+ ~(aHT · bH + bHT · aH). 

Substituting equations (4) and (3) into the virtual work expression (2) yields 

fv [a.s: 8( 2E) + (aH. 1S): 8H]dV = 

( 
2tN ·budS+ ( Poef- x) · 5udV- ( 1S: 5eE)dV. Js lv Jv 

(3) 

(4) 

( .5) 

Two commonly used alternatives for the reference configuration are the undeformed 

state Co or the last known equilibrium configuration C1 . These incremental strategies 

are known as total and updated Lagrangian formulations, respectively. 

In the finite element method the displacement. field u is approximated using shape 

functions N and nodal point displacement variables q 

u = Nq. (6) 

Substituting the approximation (6) into the virtual work equation, and expressing the 

stress increment in the form 

as = c: aE, (7) 
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where C is a fourth order tensor containing material parameters, yield the discretized 

incrPmPnt.al PfJUations of motion , linearized with respect to ..:l. q 

(8) 

where K a is the initial stress or geometric. stiffness matrix, Q the external load vector, 

R the internal force vector , M the consistent mass matrix and ..:l. q the incremental nodal 

point displacement vector. In the total Lagrangian formulation matrix K 1 contains the 

linear stiffness and initial rotation matrices . In the updated Lagrangian formulation 

matrix K 1 is dependent on the incremental displacement between configurations C1 

and c2. 
If the surface tractions depend on displacement configuration, an additional 

difficulty is encountered. It is assumed that the surface traction vector can be expressed 

as a function of a single parameter .>., i.e. 

(9) 

where tr IS a reference traction vector, dependent on the deformations. However, 

the displacements 2 u are unknown quantities and the traction vector 2 t has to be 

approximated by the equation 

(10) 

For further details on displacement dependent loadings see Hibbit (1979), Argyris et al. 

(1982), and Schweizerhof and Ramm (1984) . The last term in Equation (10) contributes 

to the tangent stiffness matrix, and the discretized equations of motion take the form 

1( ) 2Q M2.. 1R K 1 + Ka - KL .6.q = - q - , (11) 

in which 

(12) 

is t.lw lon.d stiffness matrix. In nonconservativP loading cases the lonrl stifl'nPss matrix 

is unsymmetric. 

BEAMS WITH SOLID CROSS-SECTION 

Kinematics of a beam 

The deformation of an initially straight beam with undeformable cross-section is studied. 

With reference to Figure 1, let C be the centroidal axis of the cross-section and 

( el, e2, e3) the unit orthonormal vector system in the reference configuration, with el 
along the beam axis ( x-axis ), and e2 , e3 principal axes of the cross-section (y- and z­

axes). A deformed configuration of the beam is then defined by the vector function 
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r( x ), which characterizes the position of the beam axis, and by the function 8 ( x ); an 

orthogonal matrix defining the rigid rotation of the cross-section at ;c. 

If X 0 = r 0 + y 0 is the material vector in the undeformed reference configuration and 

x = r + y (vectors y and Yo lie on the cross-section plane) the corresponding vector in 

the deformed state, they are related by the equation 

X = r + 8 y 0 • ( 13) 

The displacement vector u is then 

U =X- Xo = Uc + (8 - I)y0 , (14) 

where Uc = r- r 0 is the translational displacement vector 

y 

X 

Figure 1. Deformation of a beam. 

The rotation matrix can be expressed in concise and elegant form as an exponential 

of a skew-symmetric matrix 

8 = exp(O), 
- 0 
0 

rP 

(15) 

result which may be deduced by arguments based on Lie 's theory of groups as is done 

in quantum mechanics, Argyris ( 1982 ). Cartesian components r/J, 1/J, () define a so-called 

rotational pseudovector 

(16) 

see Figure 2. 
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Keeping in mind, that the kinematical relations for an updated incremental finite 

element analysis are sought., assuming small rotation cp, the truncated form of the 

rotation matrix 

(17) 

ts used. Rotations </J, ·1/J , () can then be interpreted as component rotations about 

cartesian axes x, y, :: . 
z 

Figure 2. Finite rotation vector cp. 

The position vector Yo and the displacement vectors u and Uc are 

Yo = [~], U=[::], llc=[::], 
• W !Vc 

(18) 

Where Uc, Vc and 'Wr. denote the deflections of the centroid axis in the X, 'Y and Z ( e1, e2, e3) 
directions. Then Equation (14) becomes 

u=ttc ~ (B~ !<P'l/J)y+(!/J+ !<PB)z, 

v = Vc ~ ! (</J 2 + B2 )y ~ (¢ ~ t 'ljJB)z, 

'W = We+ (</J + ! 1/JB)y ~ t (</J 2 + v...Z)::. 

(19) 

Equations (19) were obtained by assuming, that the cross-section remains planar 

during the deformation. However, warping displacements take place when the cross­

section is twisted. The warping displacement is assumed to depend on the derivative of 

the angle of twist., Love (1944), according to equation 

Uw = ~w(y,:; )</J,:c, (20) 

where w is the warping function which depends on the cross-section shape, and can be 

solved from Laplace equation 

W,yy + W,zz = 0 Ill A, 

gradw · ii = 0 on 8A. 
(21) 
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A good approximation to the warping function of a general rectangular cross-section, 

Bathe and Chaudhary (1982): 

(22) 

In the finite element analysis the torque is usually constant within an element. 

Therefore the expression (22) contains two additional parameters for each element to 

be solved. These parameters w1 and w2 can be eliminated by st ati c condensation prior 

the assemblage of the element matrices into the global structural matrix. 

Combining Equations (19) and (20) the kinematical relations for displacement 

components are 

u = Ue- (8- ! c/>1/J)y + (¢ + ! cf>8)z - w(;r,y)c/>,:c, 

v =Ve- !(c/>2 +82 )y - (¢ - !¢8)z, 

W =We+ (c/> + ! '¢8)y - ! (c/> 2 + 7f 2 )z. 

Elements based on Timoshenko beam theory 

The only nonvanishing components of the Green-Lagrange strain tensor are 

E + 1( 2 2+ 2) :c = U,x 2 1£ ,, +v,,. W, ;c, 

E :cy = ! ('n,y + V ;:c + ·u,,u,y + v,:cV,y + lP ,,w,y), 

E:c z = ! (u ,z + v, :c + ·u ,;c lt,= + ·v, :cV ,z + w, , w,z). 

(23) 

(24) 

In the finite element method the displacements ue, ve, we, ¢, 4' and 8 are interpolated by 

the formulas 
Uc = Nuqu , 

Ve = N .vqv , 

4> = N.pq.p, 

¢ = N .pq .p, 

8 = Neqo, 

(25) 

where the row matrices Nu etc. contain the shape functions and the column vectors q" 

etc. the nodal point displacement parameters. By using the kinematical assumptions 

(23) the expressions for the strain components 

f'"Y = /:cy(uC>vC>wc,c/>,7f,8), 

/u = lu(ue, Ve, We, c/>, ·¢, 0) 

(26) 

can be derived. The linear strain-displacement matrix B IS obtained from the 

relationship 

fJg = Boq (27) 
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between the virtual nodal point di splacement.R and the virtual strains, and it has the 

form 

B = (28) 

[ a,N., , azNv,:c a3Nw,., a.4N4> + a.sNq.,x a.6N .;, + a1N "'·"' a0 No+ a 0 N,,l 
b1Nu ,:c bzNv ,x b3Nu•,x b4 Nq, + bsN¢,x b6N .p + b1 N .p,x bsNo + bgNo,', , 
c1Nu,:v czN,,, c3N w,x c4Nq, + csN¢,:c c6N1/, + c7N.p,:z: csNo + cgNo,x 

where the abbreviations a;, b; and c; are 

al = 1 + Uc, x - y8,x + z'l/•, x, 

a3 = Wc,x + Y¢, x, 

as= (i + z2 )l¢,x- z(vc,x­

a6 = za1 + ! y¢ , 

bl = -8, 
b2 = 1, 

b3 = ¢, 

b4 = Wc,x + ! '1/J, 
bs = -z- w,y, 

b6 = t(¢+ z8, x), 

b1 =- t z8, 

bs = - 1 - · ·nc,x + t z ,P ,.., , 

b9 = ! z ,P, 

a2 == Vc,x - z </>, x , 

a4 = t (y,P, ., + z8, , ), 

t 8) + y(tvc, x + t '1/J), 
a7 = -ya1 + ! z¢, 

CJ = '1/J, 
cz = -¢, 
C3 = 1, 
C4 = -Vc,:t + t y8,x 1 

Cs=y-w, z, 

C6 = 1 + 1tc,:c + t y8,x, 

C7 = t y8, 

cs = ! (¢ + y'l/J, , ), 
Cg = - t y1{• 

Using the strain-displacement matrix B and the constitutive matrix C, the matrix K 1 

in Equation ( 11) can be written in the form 

(29) 

and the internal force vector correspondingly 

(30) 

where 1 S i~ the vector of 2nd Piola Kirchhoff stresses 1 S = [ 1 5'.., 1 5'xy 1 5' .., 0 ] T. The 

geometric stiffness has the form 

Kcuu 0 0 0 Kcu.p Kcuo 
Kcvt• 0 Kcvq, 0 0 

Kc= 
0 0 

Kc¢.p Kcq,o 
Kuwu• Kcwq, 

Kc¢q, 
(31) 

Kc.p.p Kc.po 
s y m m. Kcoo 

in which 
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Kac~><t> = i 1 S,(y2 + z 2 )NL, N<~>.xdV, 

Kaw<P = j 1 SxyN~,.,N<P,xdV + ~ 1 SxyN~,xN¢dV, 
v v 

j 1 T j1• 1' Kav¢ =- V SxzNv,:z:Ncl>,xdV - V 5 xz Nv, :z: Ncl>dV, 

Ka,p,p = fv 1 Sx z2 N~,:z:N.p,xdV, 

Kaf.p = t i 1 Sxy(Nr.N.p + NrN,p,x)dV + t fv 1 SxyNrN,pdV, 

K au,p = i 1 S.,zN~,xN,p,xdV + i 1 SuN~.xN .p dV, 

K aee = fv 1
Sxy

2
NLNe,xdV, 

K a,pe =- i 1 S:z:yzN~,xNo,xdV + t fves :z:zY -
1 Sxy z)N~,xNedV 

+ t [esxyz - 1 SxzY)N~No,xdV, 

K a<t>o = t [ 1 S xz(Nr.Ne + NrNo,.,)dV + ·~ fv 1 S , ., NrNodV, 

K auo = --i 1 SxyN~,.,Ne,xdV -- i 1 SxyN~,xNodV. 

The integrations along the x-aXIs direction have t.o be done by the one point 

Gaussian quadrature when linear shape functions for each displacement quantity are 

used. The one point rule integrates exactly the bending stiffness part and makes the 

shear stiffness singular, thus the element does not lock when the structure becomes 

slender. The one point integration yields the same linear stiffness matrix as is obtained 

by using an additional hierarchical parabolic mode for deflection and condensing out 

this additional degree of freedom. 

Also higher order interpolation can be used yielding an subparametric element. 

In geometrically nonlinear analysis the interpolation of geometry is important. Much 

better computational effectivity can be achieved by using a linear isoparametric element.. 

Over the cross-sectional area either Gauss or Simpson integra t.ion rules can be used. 

In the elastic case and when the cross-section is narrow (h / b 2 10) the 2 x 2 Gaussian or 

the 3 x 3 Simpson's rule is sufficient, although these rules underintegrate the torsional 

rigidity term 

(32) 

when the approximate warping function (22) is used. However, the underintegrated 

torsional rigidity is closer to the exact value than using the 4 x 4 Gaussian rule, which 

integrates Expression (32) exactly. When the cross-section is a square the 4 x 4 Gaussian 

rule gives the best accuracy, see Table 1. 
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Table 1. Accuracy of the numerically evaluated torsional rigidity for a rectangular 

cross-section when approximate warping function (22) is used. 

rule h/b ltfhb3 1:xact / hb3 error% 

Gauss 2 x 2 1 0.091449 0.140577 34.95 
3 X 3 0.139012 1.11 
4 X 4 0.140741 0.12 

Simpson 5 X 5 0.147200 4.71 
7 X 7 0.142018 l.Q1 

Gauss 2 x 2 4 0.2480~2 0.280813 11.68 
3 X 3 0.275483 1.90 
4 x 4 0.288537 2.75 

Simpson 5 X 5 0.306217 9.05 
1 X 1 Q.292496 4.16 

Gauss 2 x 2 10 0.313838 0.312325 0.48 
3 X 3 0.317249 1.58 

Simpson 5 X 5 0.330447 5.80 
7 X 7 0.324860 4.01 

Gauss 2 X 2 100 0.333122 0.331233 0.57 
3 X 2 0.333145 0.58 

Simpson 3 X 3 0.333481 0.68 
Q X 3 Q.3333H Q.63 

* smallest error 

The consistent. mass matrix is 

M = Mww 

in which the submatrices Mii are 

MJi = fvpNJNJdV, J = u,v,IP, 

r ( 2 2 T M q, q, = Jv p y + :: )Nq,Nq,dV, 

Mv"" = fv pz
2
Nr,N.pdV, 

Moe = fv py2 NrNedV. 

* 

* 

* 

* 

(33) 

(34) 

For a linear two node element the diagonal mass matrix can be written in the form 

(35) 
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where the submatrice Md has the form 

1 
1 

1 
(36) 

The notations are IP = Iy +I., Lis the length and m = pAL is the mass of an element. 

The virtual work expression for internal for ces can be formulated using stress 

resultants and the corresponding generalized strain quantities 

j 2 ., 
v S;io(· Eij )dV = (37) 

1L [2 N oecc) + 2 Qyoerxy) + 2 QzoerxJ + 2 M xoe "-x ) + 2 M yoe "-y) + 2 M , oe "-z )]dx , 

where the stress resultants N, Qy, Q z, A1x, A1 y and l'vf~ are defined by Equations 

N = i S, dA, 

Qy = i S,ydA, 

Q, = i s,~dA, 
M , = i ( SxzY - Sxy z )dA , 

My = i SxzdA, 

Mz = i SxydA, 

(38) 

The generalized strain measures, the elongation cc a t the cross-section center, the 

shear 1'h<1.i.ns ')',. ,, . /,. : • t.}w t.wi st. per unit \Pngtl' " "· and the hendin g rnrva.t.nt.e:- ,.,.,, a nd 

I'Cz are defined by equations 

1 2 2 2 
f:c = Uc,x + 2[vc,>:: + Wc,x + {Ip / A)¢>,,], 

/x.y = 'Vc,x - (} + 'W c,xr/J + ! </>1/.•, 

/x ~ =lVc,x + ·1/J - Vc,xrP + } ¢8, (39) 
I'Cx = .P,x- ,PO,.,+ 1/J,., O, 

I'Cy = rP,x - 'Vc,x.P,x + t (¢>8,x + </>,x 8), 

Kz = - 8, x +wc,x.P,x + t (</>1/J,x + ¢,xi/J ). 

In this case the term u~, has been neglected in the expression of axial strain. 
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The vectors of stress resultants and generalized strains are denoted by Q and e, 

respectively as 
Q = [N Qy Q , !vi, My lvf, jT' 

e = [t c jT 
/xy -y :r; z. I'\, X /i, "'·' . y 

( 40) 

The constitutive law in the elastic case can be written in an incremental form 

aQ = cae, (41) 

with 
EA 

C= 
GAsz 

(42) 

m which EA is the axial rigidity, G A,y and G Asz the shear stiffnesses 111 y and z 

directions, Git the torsional rigidity and Ely, Eiz the bending stiffnesses about y and 

:; axes, respectively. 

In this case the strain-displacement matrix has the form 

Nu ,x "Vc, xN·v, x '{Vc, xN w,x 

0 Nv,x c/>Nw,x 
0 ~¢N ,., , Nw,, 
0 0 0 
0 -¢,xNt,,:c 0 
0 0 cf>,xNw,x 

where 

B = 

a1N¢,x 
a.2N¢ 
a3 N¢> 
N</>,:r. 

a.4N¢ + a.sN¢, x 

a6N¢ + a1N¢,x 

~8 ~ vcx' - ' 
:}B ~ vcx' - ' t ·1/J + Wr ,x, 

0 
asN.p 

N.p 
BN.p,x ~ B,xN .p 

N.p,x 
agN .p + asN.p,x 

(43) 

0 
-No 
as No 

1/J,.,No ~ 1/JNo,x 
a.sNo ,:z: + dgNo 

~No,x 

a.2 = Wc,x + t 1/J, 
a4 = tB,.,, 
a6 = t 1/J,.,, 
a.s = t ¢, 

The internal force vector is calculated using the formula 

(44) 

The geometric st.ifl:'ness matrix has a little simpler form than in Equation ( 31) 

0 0 0 0 Kcu.of: Kcuo 
Kc,.,, 0 Kc,.q, 0 0 

Kc = Kcww Kcw¢ 0 0 
( 45) 

Kc.p¢ Kc¢.p Kc¢o 
0 Kc,,o 

s y m m . 0 
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where the submatrices are t 
( ' 

Ka;; = N Jo NT.xN;,,.dx , 

Kaq..p =- Nip / A 1L NLN,p,, d.r , 

Kcw¢ = Mz 1L N~,, Nq,, , da.· + Qy 1L N~,,N<t>dx, 
Kcu¢ =-My 1L N;,,Nq, ,, dx - Qz 1L N;,,N.pdx 

K aq,.p = t M , j\N~,,N.p + N~N,p,,)dx + t Qy 1L N~N.pdx, 
Ka,.,p = Qz 1L N:,,N .pdx, 

K a.pe = t M, 1L N~,,Nedx- ~ M , 1L N~Ne,,dx , 

Kaq,e = t My j\N~,,Ne + N~Ne,x)dx + t Qz 1L N~Nedx, 
Kaue = - Qy 1L N:,,Nedx. 

The internal force vector ( 44), the geometric stiffness ( 45) and the linear stiffness matrix 

K 1 = 1L BTCBdx (46) 

can now be integrated with respect to the axial coordinate only. This approach results in 

a simple way to formulate the finite element equations for a three dimensional beam. It 

is computationally much more economical than a fully numerically integrated element, 

Equations (29)-(31). However, nonlinear material behaviour cannot. be modelled as 

accurately as in the layered model. For example, in elasto-plastic case the yield surface 

has to be formulated using the stress resultants , which is quite complicated for general 

cross-sectional shapes. Therefore simple approximate yield surfaces, expressed in terms 

of stress resultants, have usually been adopted in the analyses. However, the result s of 

this kind of computations have to be interpreted with great. care. 

THIN-WALLED BEAMS 

Kinematical relations 

The kinematic behaviour of beams with thin-walled open cross-section can be derived, 

based on the assumption that the projection of the cross-sect.ion on a plane normal to 

t In the elastic case J A 
1 5' , (y 2 + z2 )dA = NIP/ A. If the material behaves nonlinearly, 

this approximative expression can still be used , but it may slow down the convergence 

of the iterative process. In the numerical examples, thi s retardation has found to be 

insignificant. 
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t.he centroidal axis does not distort. during deformation, i.e. tlw cross-section is rigid 

in its projed.ion plane. According to this assumption, the in plane displacements of an 

arbitrary point of the cross-section undergoing a small twisting rotation can be expressed 

by three parameters: two displacement. cornponent.s v, w and the angle of twist ¢ about 

the longitudinal beam axis, i .e. 

W = 'We + y</J. 
(47) 

In this study both elastic and inelasti~ material behaviour has been investigated, so all 

displacement quantities are referred to a single point of the cross-section. Transforming 

v and tv in Equation (47) from the x , y, z coordinate system to the orthogonal x,s,r 

system gives, see Figure 3 
v = ·v cos a+ w sin a, 

(48) 
tv = --v sin a+ w cos a, 

X 

Figure 3. Cross-section of a thin-walled beam. 

where v and w are the displacements of an arbitrary point of the cross-section along the 

s- and r-axes, respectively, while a denotes the angle between y- and s-axes. Equations 

(47) and (48) result in 

where 

·v = Vc cos n +We sin a + h.¢, 

- h s = R · r = -: cos a - y sin n, 

h,. = R · s = z sin a+ y cos a. 

The unit normal vectors s, rand the radius vector Rare, see Figure 3 

s = cosaey + sinaez, 

r =- sin aey +cos nez, 

R = yey + .:eo, 

(49) 

(50) 
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where ey and e0 are the unit. vectors in the directions of y - and > axes. Using the linear 

shear st.rn.in t>xpressions 

(51) 
'Yxr = ll. , I ' + 'tV ,J', 

the axial displacement. can be integrated from the total differential 

= ( 'Yxs - Vc,x COS a - 'Wc, x sin a - h ,rf>,, )ds (52) 

+ ( 'Yxr + 'V c,x sin a - 'Wc,x cos a - hr r/>,x )dl'. 

The shear strain --y,, consists of two parts , i.e. parts due to nonuniform bending 'Y~. 

and torsion.,; ,, while the strain 'Yxr has contribution only due to nonuniform bending: 

- b + ,t --y,, - 'Yxs lxs> 

'Yxr = 'Y~r· 

Collecting the terms in Equation (52) in the form 

du =--y~Y cos ads -- 'Y~y sin adT - ·vc, x cos ads + 'Vc ,x sin ndT 

+ 'Y~ z sin ads + 'Y~z cos ndT - 'Wc, x sin ads - Wc,xds 

- ·wc,x cos adr --- ( h,¢ ,:r - ~~. )ds - h r¢.xd'l', 

(53) 

(54) 

and using the conventional assumption of the shear strains in the Timoshenko beam 

theory 
'Y~y = ·vc,x - () , 

'Y~z = 'Wc,x + '1/', 

with an additional assumption for shear strains due to torsion 

(55) 

(56) 

where {) is an additional displacement variable describing the variation of warping 

displacement in the longit.udinal axis. 

Integrating the differential expression in Equation (54) gives the axial di ;;placeme nt 

( .57 ) 

In the above expression, !I. e is an arbitrary function depending only on the :r-coordinate, 

and w, is the warping function at the middle line of the cross-section of the member 

w,(s) = 1' h,ds . (58) 

Further, Wr is the warping function due to the slab action 

Wr(s,'l') = hr( s)'l' . (59) 
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The total torque is a combination of the pure St. Venant 's torque lvf,t and of the 

war pi up; t.orrpw Jl.l w 

M,. = Afxt + lvfw, 

M,,1 = Glt¢,,. 

Mw = GI.(¢,x - '!9), 

where the shear constant Is is defined by expression 

The bimoment B is defined by the equatio11 

B = - E l wrJ,.,, 

where the warping constant l w is 

J ') 
lw = A w;dA. 

(60) 

(61) 

(62) 

(63) 

The differential equations in terms of the displacement quanti t ies ¢ and 1'} can be 

obtained from the equilibrium conditions 

{ 

- (Mw + M xf ),:r = rn,, 
B ,x = lvfw, 

(64) 

where m :c is the distributed torque along the axis of the bar. Substituting Equations ( 60) 

and ( 63) into the system ( 64) gives the differential equation system for shear deformable 

torsion bar 

{ 
- GftcP,xr. - Gfs~r/J.xx - tJ,x) : m.,, 

- ElwfJ,xx - GI.(¢,x- '!9)- 0. 

Thin-walled beam element 

(65) 

For a straight. beam element. with a thin-walled open cross-section, the displacement. 

expressions are almost identical to those used in the case of a beam with a solid cross­

section. Only difference is that. the warping di splacement is divided into two parts, 

11 = Uc ·- (8 -- ~ ¢1/J )y + ( ~• + ~ cjl8) :: - w,.rfJ,:c + w 8 t9, 

v = V c - 1 (cjl2 + 82 )y -- (¢- 1 ,PO) z, 

w = wc + (rfJ + 1MJy - 1 (¢21-4,2) ;; . 

(66) 

The twist per unit. length is independently interpolated within an element by the shape 

functions 

5{) = No6q11. (67) 
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In the present case the strain displacement matrix has th e form 

a.4N q. + a.sN ,p, x 
b4N1 ~r- bs N q. ,.: 

c4N <f + r· sN.f>, >· 

where the coefficients are presented in Equation ( 28) except 

a1 = 1 + ·n c ,x- y8, :c + z!/• .. ,. ~~ w.-rJ ,r., 

ag = -ya1, 

bs = - z- Wr,y, 

Cs = y- Wr, z , 

a1o = w,ah 

b1o = - w,,y, 

(68) 

Compared to Equation ( 31) the additional terms in the geometric stiffness matrix are 

r 1 • 2 T Kat911 = Jv S .,w,N 11 ,., Nt9,xdV, 

Kao11 = J 1 S ., yw,NLN11, ., dV, 

Ka,p11 =-J 1 S .,zw,N~,x Nt9 ,x dV, 
(69) 

An element stiffness matrix and internal force vect.or are integrated using the one point 

Gaussian quadrature in x~axis direction when the linear shape functions are used. Each 

part of a cross-section has to be integrated at least the 2 x 2 Gaussian rule. For inelastic 

analysis higher order rules have to be used. 

The consistent mass matrix contains also an additional block, i.e. 

(70) 

and the lumped diagonal mass matrix for a two noded element has the same form 

as in Equation (35), where the seventh diagonal term in the nodal submatrix Md is 

mlw./(2A). 
A thin-w<111Nl hP<1m P]Pnwnt. ce1n also hP ff'l1'1llltli1!NI nsing th ~> s tr~>ss J'P~Pitant. s and 

the corresponding generalized strain quantities. The int~>rnal virtual work expression 

for a thin-walled beam is 

(71) 

The generalized strain measures cc, /xy, / ':z:o • ~>,,, ~>,Y and "- z are defined in Equations (39) 

and in addition 
"'w = - 13, , 

(72) 
/w = </J ,,. - 13. 
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Denoting the vecto r of stress resultants by Q and the vector of generalized strains by e 

Q = [N 

e = [t:c / x y K w 

B 
T 

/w j ' 

the constitutive law in the elastic case can be written in an incremental form 

where 
EA 

C= 

~Q = cae, 

Efyz 

EIZ 
Efw z 

GI. 

(73) 

(74) 

It. should be noted that all s tress resultants art> referred to a single point on the cross­

section i. e . on the centroid. In most of the studies of thin-walled beams two reference 

points, centroid and shear center , a re used . However, once some part of the cross-section 

starts to develop inelastically, the centroid and the shear center as well as the principal 

axes of the section change continuously wit.h t.he in creasing load . Hence, there seems to 

be .no advantage in adopting such two reference point.s or making use of the properties 

of the principal axes. 

An element based on Vlasov's dassical theory of torsion concerning thin-walled 

m embers, Vlasov (1963) , can be simply constructed from the presented elements by 

using a penalty method. In an element , formulated by using the stress-resultants and 

generalized strain quantities, the Vlasov's constraint 

(75) 

can be included in the constitutive matrix C by substituting term aGI, instead of 

G I., where a is suit ably chosen penalty parameter ( n » 1). To other elt>ments, the 

constraint (75 ) can be included by adding a term 

in the variational equations. 

TRANSFORMATION BETWEEN LOCAL 
AND GLOBAL COORDINATE SYSTEMS 

(76) 

Orientation of a beam is completely defined in the global X, Y, Z space, if the beam axis 

and the two directions of the c.ross-section perpendicular to the beam axis are known. 
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The orthonormal base vectors in the global coordinate syst.em an· denoted by G1, G 2 

G3 and the orthonormal base vectors in the beams initial local coordinate system x, y, z 

by g1 ,g2 ,g3 in the directions of X,Y,Z and :e,y,;; axes, respectively, see Figure 4. The 

initial orientation matrix of a beam can lw defined by 

g1 · G2 
gz · Gz 
g3 · G2 

1.e. the matrix Y 0 contains the direction cosines 

and transfers the global base vectors into the local ones 

y 

G, X 

z 
Figure 4. Orientation of a beam. 

(77) 

(78) 

(79) 

At some equilibrium configuration C2 , reached after n+ 1 steps, the rotation matrix 

Rn+I can be obtained from the rotation matrix at previous equilibrium configuration 

C 1 (at step n) by the formula 

(80) 

where the incremental rotation matrix a y is calculated from the incremental 

displacements between steps n + 1 and n. 

In the computer program the initial rotation matrix Y" is formed from the 

information included in two vectors, the tangent. vector of t.llf' beam <txis g1 and t.he 

normal vector of the primary bending plane, or some other given dired.ion of the cross­

section plane, g3 . Othonormal base of the triple 
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forms the initial rotation matrix Y' 0 • If the vector g3 is not normal to the principal 

llf'nrting plane, forming an angle <p, the initial rotation matrix is nbt ainerl from the 

orthonormal base g1 ,g2 ,g3 , and the resulting matrix is 

(81) 

If the element stiffness matrices a nd the internal forcf' vector are integrated numerically 

over t he cross-sectional area, the transformation (81) is not. necessarily needeed. 

The element stiffness matrix K and the internal force vector R, evaluated in the 

local coordinate system, are transformed into global coordinate system by formulas 

K = TTKT, 
r­R = T R, 

where the transformation matrix T is composed of the rotation matrices 

(82) 

(83 ) 

where the number of blocks in the diagonal is twice the number of the nodal points in 

an element. . In the case of a thin-walled beam element. the transformation matrix has 

the form, Bazar !I. and El-Nimeiri ( 197:3) 

Y' 
y 

1 

T = (84) 
y 

y 
1 

where the unit element corresponds to t he warping degree of freedom. 

CONSTITUTIVE MODELS 

E lasto-plastic material model 

Incremental constitutive equations which are suitable for comput ational purposes are 

usu ally based on a rate-ty pe plasticity theory by Hill (1959). The strain rate D is 

decomposed into elastic and plast.ic part.s 

(85) 

The elasti c part D e is related to the corotational Zaremba-J au mann rate of Cauchy 

stress tensor T by a linear law 

T = ce : De = cc : (D - DP), (86) 
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' in which cc is the elastic constitutive tensor. In the h-Aow theory, the yield function 

IS 

f = .j"iJ~ - a(n;) , (87) 

where .!2 is the ~ecnnd iuva.ria.nt. of the devia.toric Cauchy :- \.r• ·ss tensor 

1 
T' = T · ( ~trT)I, (88) 

and K is a hardening parameter. The plast.ir part of the strain rate is obtained from the 

plastic potential by the normality law 

DP = ~ 8! = .\ oT n . (89) 

Using the consistency condition during plastic flow, i.e. 

f =O (90) 

~ is obtained and Equation ( 8.5) gives 

* 1 
T = (Ce - hbb): D = cep: D, (91) 

where 
b = C": n , 

h = n : c• : n + Ep. 
(92) 

The plastic hardening modulus Ep is obtained from the tangent modulus Et and the 

modulus of elasticity E by the formula 

E _ EEt 
P - E - Et ' 

E _ day 
I - d~P . (93) 

The yield stress a y is obtained from tension tests as a function of the logarithmic inelastic 

strain 

(94) 

whl'l'f' I is time or in ~ tntir nnnlysl's n load pa n tnlPie•r . ln the Ln.Qrnngi<tn ,.l,, ,,.,.;,.t; ,,,, ;1 

relationship between the 2nd Fiola-Kirchhoff stress and the (~reen-Lagrange strain 

. . 
s = CL: E (95) 

is needed. Taking the time derivative frotn the exprel;sinu 

S = JF- 1 • T · F-r , (96) 

where J = Pol p is the clet.erminant of the deformation gradient F, and using the 

relationship between the strain rate D and the rate of Green- Lagrange strain 

• T 
E ' ~ F · D · F, (97) 
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yield Equation (9.5 ). If small st r ain assumption IS m ade. the deformation gradient 

ront.n.ins only t.lw rigid body rot.a.t.ion, i. e. 

F ::::o R, 

and J = 1. So, the time derivative of the 2nd Piola-Kirchhoft' stress is 

where W is the rate of rotation tensor. Equation (97) has now the form 

• T 
E = R ·D·R. (99) 

Su bstitut.ing Equation ( 91) into Equation ( 98 ) and taking Equation ( 99) into account, 

the relationship between the rate of the 2nd Fiola-Kirchhoff stress and the Green­

Lagrange strain is obtained 

s = ccp: :E. (100) 

Viscoplastic material model 

For rate-dependent. material behaviour the strain rate is decomposed into elastic and 

viscoplast.ic parts Perzyna ( 1966) ha.~ given t.h e following expression for the viscoplastic 

part 

D"P = ..,. ( j_ - I )P of 
u Y 8T 

(101) 

where f = ~~ ')' is the viscosity coeffici ent , O" y the static yield limit and p is a 

material parameter. The notation ( x) has the meaning 

(x ) = {~ ' if X S 0; 
if ;t > 0. 

(102) 

For isotropic hardening the static yield limit. is taken as function of the effective plastic 

strain [P 

:P- It 
~ -

t. 

Thermo-elasto-plastic material 

•) 

::n •·p : D''Pdt. 
3 

(103) 

At. high temperatures the ma terial parameters, the modulus of elasticity and yield stress 

decrease. The strain rate is decomposed into elastic, plastic and thermal parts 

D = De + DP + D 9. (104) 

The ]z-flow theory is used t.o evaluate the plastic strain rate and the thermal strain 

rate is 
9 . 

D = aOI, (105) 

25 



where a: is the coefficient of thermal expansion which is a swmed to be constant. The 

yield condition is expressed by !.he formula 

(106) 

where the yield stress 17 y depends on a hardening paramete r "- and temperature (). 

Proceeding as in the previous chapters the corresponding form of the rate equation 

(100) is obtained. 

Yield surfaces expressed in terms of stress resultants 

Denoting the vector of stress resultants and the corresponding generalized strains by Q 

and e, the yield function can be expressed in the form 

f(Q) = 0. (107) 

For a three dimensional beam with arbitrary cross-sectional shape the function f would 

be very complex . Yang et a!. (1989) have discussed the form of the yield surface for a 

double symmetric !-sections under five active forces N, !1![, , Afy, Af, and B. However, 

in analysing the response under strong transient loadings, the effect of shear forces 

becomes important and cannot be neclected from the yield function expression. Simo 

et a!. (1988) have proposed a stress rewlt.ant. yield funrt.iou for a plane Timoshenko 

beam containing the shear force. In this st.udy two simple approximate yield functions 

have been used. The first one, hypershere has the furm 

(108) 

where nr is the number of stress resultants. The second one, hypercube yield surface is 

I ~;i I = 
1

' 
i = l, ... ,nr. (109) 

In Equations (108) and (109) Qpi is the fully plastic value of the corresponding stress 

rPsnlta.nt. F.valnaJinn of t.lw plastic s trRins C::..eP ancl th l" ('onstitut.ivf' m , tr-j_.. \'CI' is 

formed similarly to the ones presented in previous chapters. 

SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS 

Discretization of nonlinear equations of a static equilibrium yields a n-dimensional 

nonlinear algebraic equation system 

F(q,>.) = ,\Qr(q) - R(q) = 0. (110) 

where q is an-dimensional vector of displacement quantities. also called a state variable 

vector, R the vector of internal resistance forces, Q,. the reference load vector and ,\ 

the load parameter, which now alone characterizes the parametrization of the problem. 
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Iterative methods have tu be used to solvf' the nonlinear system (110). Usually the 

( q, A) path is followed innelllentally proceeding from a known equilibrium state eq, 1 >.) 
to an adjacent configuration (2 q , 2 >.). 

In the incremental procedure two st rategies have to be chosen: how to proceed 

from configuration 1 to the next configuration 2 (prediction) , and how to improve the 

predicted solution (correction). The first question is crucial. It has direct influence 

to the beh aviour of the correc.t.or algorithm and so to the cost of computation. Also, 

depending on the kinematical assumptions made in the formulation of the equilibrium 

equations , the accuracy of the solution and the reliability of the whole computation 

process is to a great extent determined by the prediction phase. Thus, the construction 

of a reliable predictor algorithm is of primary interest . 

The arc length ~s between configurations 1 and 2 is defined by equation 

(111) 

where tT = [ AqT ~>.]. The prediction step to next configuration can b e determined 

from equations 

A qq = e K-
1

)1Qn 

. ~s 
~ >. 1 = s1gne K ) , 

/(A qq )TW Aqq + a 2 

Aq1 = ~>.1 A qq, 

where the signum operation is defined 

sign(K) = { ~~ : if K positive definit e; 
otherwise. 

(112) 

(113) 

A family of corrector algoritms are expressed in the form: solve the iterative changes 

bq i and 6 A i from 
Ki- Ibqi = b>.iq~- 1 _ Fi-1, 

c( A q\ ~>.i) = WfCn; + fi = 0, 

liqi = £') ,\ itiqQ + 6qP,, 

bqQ = (Ki- 1 )- 1Q :.- 1, 

bq~ = (Ki- 1 ) - 1Fi - 1. 

(114) 

In the constraint. equation (114)z a positive definit e, or at least positive semidefinite, 

diagonal weighting matrix is used to m ake the load parameter and the different 

displacement quantities commensurable. It is in partitioned form 

(115) 

where the diagonal matrix W contains the weighting terms of displacements and a is 

a scaling factor. Matrix W can also be updated, Tuomala and Kouhia (1986), during 
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the computation in order to <tdapt t!H· solution algorithm to th e particular problem in 

C]Uestion . For instance, the emergence of local iustabilit.ies could be detected better by 

the continuation method if the procedure cou ld control more clnsely those degrees of 

freedom which change most rapidly. 

In this study Fried's orthogonal trajectory met.hod , Fri ed ( 1984), is used. It is 

simple and linear for solving the load parameter change . Vectors t , n and scalar 8 are 

(116) 

With a certain choice of the weighting matrix W, Equation s (114) can be identified 

with single displacement control method , Batoz and Dhatt. ( 1979 ). If the choice of the 

controlling displacement is determined independently at. each step, the method is similar 

to Rheinboldt's continuation procedure, Rheinboldt (1986), which also has proved to 

be reliable and effective, Eriksson (1989) . Substituting definitions (116) into Equations 

(114), the iterative change of load parameter is computed from the equation 

( 117) 

The geometrical interpretation of Fried's orthogonal trajectory method is shown in a 

one dimensional case in Figure 5. Jt should be noted that if the tangent stiffness matrix 

is not updated in the corrective iteration process, Fried's method coincides with the 

normal plane method, suggested by Ranun (1980) and which is similar to the original 

method proposed by Riks (1974). 

t 

2q q 

Figure 5. Orthogonal trajectory method. 

If a bifurcation point is noticed during the continuation, probably the simplest 

and most reliable way to branch onto the secondary equilibrium path is to use Fried's 
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orthogonal trajectory method from t.hf' pert urbed crit.i<"al strtte q = qcr + b.s</J, </J is 

the normali zed critical eigen vector. Because this method does not require a known 

equilibrium point as a starting value, the iteration onto the branch can be started from 

the perturbed state which is not an equilibrium state. 

TIME INTEGRATION METHOD 

The semi discrete equations of motion 

(118) 

can be solved by a direct time integration method. The explicit central difference 

method, based on the central difference formulas for the velocity q and for the 

acceleration q at time tn 

cln = ( qn+I - qn-1 )/2b. t , 

Qn = ( qn+ I - 2q, + qn - d / b.t 2
, 

(119) 

gives 

(120) 

In Equation (120) there is an addition of the form 0(1) + 0( .0.t2
), which gives 

unfavourable rounding errors when b.t is small, Dahlquist and Bjorck (1974). It is 

preferable to use the summed form of the lllt:>thod , where 

Noticing that 

qn+~ - qn - ~ = (qn + l -·· 2qn + qn_IJ j.0.t 

gives the summed form of the central dift'erence (CD) formulas 

cln+! = cln - ! + b.iqn, 
2 2 

qn+I = qn + .0.iqn+l, 
2 

Qn+I = M-1(Qn+I - Rn+ d, 

in which tn+! = tn + ( .0.t ) /2 . 
2 

(121) 

(122) 

The ct>ntral clift'ereTH'f' method is only <"onrlitionally stable, nnd t.he time step is 

limited to 
2 

b. t ~ b.tCI' = - -· ' 
Wnta:z:: 

(123) 

where Wma :c is the highest natural frequency of the structure. 

NUMERICAL EXAMPLES 

A cantilever beam with a solid cross-section (section proportion h/b = 2) under a 

consentrated torque in it 's free end is analysed using elastic perfectly plastic material 

model. The fully plastic torque M,p, predicted by the Nadai 's sand heap analogy is 

b2 5 
W,P = - (3h - b) = - b3

. 
6 6 
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The simple expression (22) for t.he warpin~ of the beam gives fairly good results 

comparee! t.o t.he analytical, Smit.l1 and Sidebot.t.om ( 1965 ), and numerical solutions 

made by a cellular analogy method , .Johnsou (1988). The computed maximum load was 

l.03 Mxp after ;>,o load increments at. the point. where t.he angle of t.wist. per unit lenght. 

has the value ¢/ = 2M xp/ G 11 • Calculated load di splacement. curves are shown in Figure 

6. 

0.8 
a. 
)( 

~ 0.6 
........ 

)( 

~ 0.4 

0.2 

E/ay=10 50 

1 

.. . . 

Gl t rp' I M xp 

. . -. . 

1.6 2 

Figure 6. Elasto-plastic torsional response of a beam with a rectangular cross-section. 
Solid curve indicates computations with the 9 x 9 Gaussian integration, dotted line 
the 9 x 9 Simpson's . rule. The plastic areas are shown at load levels M:c/M:cp = 

0. 7, 0.8, 0.9 and 0.98. 

Elasto-plastic torsional behaviour of a cantilever beam with a thin-walled !-section 

is also studied. When there are no warping restraints, the torque is carried by the St. 

Venant shear stresses, and the fully plastic solution is given by the sand heap analogy. 

For a thin-walled 1-beam a close approximation to t.he fully plastic sand heap torque is 

where tw and t f are the web and fl ange thicknesses, h the depth of a beam between 

flange centroids and b t.he breadth of flanges. However, in most structures in which 

torsion is significant., there are warping restraints at. t.he ends of the members. It is 

known that the maximum load carrying capacity of a twisted !-beam with warping 

restraints is higher than the sand heap value, but there is no exact. theoretical solut.ion. 

An upper bound for the total torque Mxo at plastic collapse is given by Dinno and 

Merchant ( 196.5) 
h. t r b2 

lvl xo = lvf:cp + -- u ~ --'----- . 
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Figure 7. Elasto plastic behaviour of a cantilever I-beam. Solid curve corresponds 
to the pure St. Venant's torsional behaviour and dashed line indicates the load­
deflection curve computed with elements containing warping degrees of freedom. 
The 4 x 4 Gaussian integration rule in every cross-section part is used. Dotted 
line is the result. of computation with the 2 x 2 Gaussian rule at each cross-

section part . 

The cantilever beam shown in Figure 7 is aJ)alysed using a four element mesh where 

the nodal point coordinates x j have been graded polynomially according to the grading 

function 

f(xj) = x~, 

where {3 = 3, see Babuska and Szabo (1983). The cross-section is constructed of five 

rectangular parts in which the 4x4 Gaussian integration rule is used in each part, 

separately. The calculated load-deflection curve is shown in Figure 7. The maximum 

torque obtained in the present calculation was 1.33 Mxp> which is slightly greater 

than Dinno's and Merchant's upper bound value 1.31 Mxp· The problem is also 

analysed using the element which does not contain the warping degrees of freedom. 

The corresponding load-deflection curve is shown in Figure 7 by solid line and the 

collapse torque obtained is 1.12 fl;fxp when t.h e 4 x 4 Gaussian rule is used in each part 

of the cross- section. The same problem has also been analysed by Bathe and Wiener 

( 1983 ). They have const.ruct.cd t.llf' weh and Hanges from nine 4 noded isoparametric 

beam elements with 6 degrees of freedom at. ea<.:h node and used constraint. equations to 

tie the parts together . Tlw results obtained in t.he present. study are in good agreement 

with the results obtained by Bathe and Wiener (198:3). 

Large deflection analysis of a circular bend 

The respon se of a cantilever 45-degree bend subjected t.o a <.:oncentrated end load is 
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calculated . The bend is modelled with eight straight. linear elem~nt s and the total force , 

7.2 F: T / R2
, is divid~d into 10, 20 or !iO equal load increments . The pure load controlled 

Newton method is used to solve the nonlinear equations of equilibrium. T he load-tip 

deflection curves are shown in Figure 8, when 20 equal load in crements are u sed. In the 

figure also the results from calculation with eight beam-column t>lements, V i rtaneu and 

Mikkola ( 1985 ), is presented. They agree well with the present results . C alculated tip 

deflections are compared to those reported in Bathe and Bolourchi ( 1979 ) , Simo and 

Vu-Quoc (1986), Dvorkin et al. (1988), Surana and Sorem (1989) and S a ndhu et al. 

(1990) in Table 2. 

Table 2. Comparison of tip deflections of a circular bend. 

·----------
NEL sha2e f. NINC -·uLR -vLR wLR 

present 8 linear 10 0.135 0.231 0.533 
present 8 linear 20 0.137 0.230 0.533 
2resent 8 linear 60 0.137 0.229 0.532 

Bathe and Bolourchi 8 cubic 60 0.134 0.235 0.534 
Simo and Vu-Quoc 8 linear 3 0.135 0.235 0.534 

Cardona and Geradin 8 linear 6 0.138 0.237 0.535 
Dvorkin et al. 5 parabolic 10 0.136 0.235 0.533 

Surana and Sorem 8 parabolic 7 0.133 0.230 0.530 
Sandhu et al. 8 linear 3 0.134 0.234 0.533 

N EL : number of elements 

N INC : number of load steps 

Tezcan 's frame 

A high frame, shown in Figure 9 is analysed. The behaviour of the same frame has 

also been studied by Tezcan and Mahapat.ra (1969) and Virtanen and Mikkola (1985). 

The frame is modelled using 72 linear Timoshenko beam elements (eight elements for 

a column and four for a beam). The values of 206 GPa and 0.25 for Young's modulus 

and Poisson's ratio are used. 

In the present computation a bifurcation point. occurred at. the load level of 1235 

kN, which is not noticed in the other studies. The post buckling behaviour contains the 

rotational mode about the vertical axis ( z-axis) and also small horizontal deflections 

in the x-axis direction, however, the determination of the post-buckling behaviour did 

not succeed. Preventing the displacement in y-axis direction and the rotation about 

z-axis, the equilibrium path shown in Figure 10 is computed. During the load step 

between the load values of 1348 kN and 1507 kN two eigenvalues became negative. 

32 



ro ,-------------------------------------------, 

<D 

8 fin. elem. 20 load steps 
8 elem. of Virtanen o.nd Mikkola {1985) 
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non- dimensional tip deflection 

Figure 8. Large deflection analysis of a circular bend. 

(a) 

~4 columns beams 

A I 103 mm2 22.806 11.006 
(b) It I 106 mm4 5.4651 1.4027 

I y I~ I 106 mm4 143.64 31.176 
4 I, I 106 mm4 446.88 94.776 (__ 

Figure 9. Geometry and loadings of the Tezcan's frame: (a) unsymmetric loading case 
analysed in the present study and by Tezcan and Mahapatra (1969) and Virtanen and 

Mikkola ( 1985 ), (b) symmetric loading case analysed in the present study. 

The bifurcation condition is not satisfied and the computation is continued onto the 

basic path. Despite of the existence of uegative eigenvalues the load-deflection curve 

is increasing. The load-deflection curve deviates significantly from the one obtained by 

Tezcan and Mahapatra but is qualitatively similar to the result presented by Virtanen 

and Mikkola. In those analyses a coarse mesh in which only one element per a member 

is used. If the problem is analysed using two elements per a member (Virtanen and 

33 



Mikkola beam-column element.) the result. seems to converge to tha t of present analysis. 

The deflected shape of the frame at the load level of 1960 kN is shown i11 Figure 10. It 

can be seen from the figure that t.he two rolums bearin~~; the vert.ical loads P buckle. 

-Q.. 

3 

2.6 

2 

1.6 

0.6 

• = Tezcan & Mahapatra 
• = 12 BC-el. (Virtanen & Mikkola) 
• = 24 BC-el. (Virtanen & Mikkola) 
o = Present analysis (72 lin. Tim. el.) 

200 400 

u/ mm 
600 

Figure 10. Displacement in x-axis direction at the point C vs. load . The blanked 
circles indicate the load step in which negative eigenvalue& are noticed. Deformed 

shape at load level P :::1960 kN . 

In the case of symmetric loading, a bifurcation occurred at. the load level of 1035 

kN, and the post buckling deformation shape was the rotational mod e about the vertical 

. axis. In this case there is no difficulty in branching onto the secoudary path . 
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Lateral buckling analysis of cant ilever beams 

In this section various analyses concerning the behaviour of cantilever beams have 

been made. First example is a long beam with a narrow solid cross-section (h/b = 
16.129, L/h = 40). This example has been st udied both theoretically and experimentally 

by Woolcock and Trahair (1974) . The lateral displacement-load curves shown in Figure 

11 are in close agreement with the results of Woolcock and Trahair. The beam is 

modelled by ten equal Timoshenko beam elements and the initial load increment used is 

f:::..P0 = 0.5JEiyGit/L2
• The obtained bifurcation loads are Per= 4.085y'EiyGit/L2 

without. the efl"ect of the selfweight and Per = 3.159y'EiyGit/ L 2 including it. As a 

classical result., without selfweight , the load factor is 4.13, Timoshenko and Gere (1 963 ). 

The exact critical load including the effect of in plane deformations is 4.036 and when 

the effect of the selfweight is included it is 3.091, Woolcock and Trahair (1974). t 
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Figure 11. Lateral tip deflections of a narrow rectangular cantilever 

Figure 12 shows a load-dt'flect.ion cnrve is shown from an analysis of a cantilever 

beam loaded by a concentrated load at the free end. The load is placed either on the 

top or on the bottom point of the cross-section. Timoshenko and Gere (1963) give the 

approximative formula for calculating the critical load 

.Jlfl7fi; . a {EI; 
Per = 4.013 £2 (1 =f LV GJ; ). (124) 

t There are some discrepancies between t.he data given in Reference Woolcock and 

Trahair ( 1974) at. page 160 in Tables l and 2. If the value of t.he expression y'EiyGit/ L 2 

is ca.lculated from the information given in the section property table. it. will be 1. 76229 

lbf and if it. is calculated from the value given to t.he classical critical load 7.01lbf (self 

weight. excluded) in the member detail table , it. is 7.01 lbf/4 .013 = 1.74682 lbf. 
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In t.his formula a. denotes the dist.ancP of t.llf' point. of application of t.he loa.d vertically 

from the centroid. If the point. of application of t.he load is above t.he centroid t.he minus 

sign is chosen. Table 3 shows the bifurcation loads obtained from an analysis using ten 

equal Timoshenko beam elements. The length of the beam is L = lOO mm, height h=10 

mm and width b=1 mm. The in plane tip displacement prior buckling is about 16-17 

% of the height of the beam. 

10 

8 

.. 
(!) 

> 6 jjj 
';> 

....... 
N 4 ....J 
Q.. 

2 

0 
0.0 

load position 

above a= h/2 

a=O 
below a= h/2 

0.2 0.4 0.6 

w/L 
Figure 12. Lateral deflection vs. load of a cantilever beam. 

Table 3. Critical load parameter Acr for a cantilever beam. 

Per= Acr)EiyGitf L 2 

load position Equation (124) 10 Tim. elem. 

above a= h/2 3.846 3.913 

a=O 4.013 4.124 

below a= h/2 4.180 4.294 

Lateral buckling analysis of a right angle frame 

Postbuckling behaviour of a very slender right angle frame is analysed, see Figure 

13. Using four elements per a member the buckling load obtained is Per =-

1.326jEiyGit/ L2 (1.087 N). The initial load step used is 6Pu = O.?>jEiyGitf L2
. 

The value reported by Argyris et a!. (1 978) is 1.088 N. In Figure l:J the load-lateral 

tip deflection curve is shown. If the load direct. ion is reYersed ( P negative) the buckling 

occurred at load level of Per· = -0.8:~8\j'J!;IyGii/L 2 • Pus!. buckling path of thiD 

computation is also shown in Figure [:3. 
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Figure 13. Right angle frame. 

0.8 

This example is particularly tricky if the linear expression E = I + 0 for the 

rotation matrix is used in formulating the equilibrium equations. In this case wrong 

buckling loads are obtained i.e. Per= 0.668JEiyGitf L2 or Per= - 0.512JEiyGit/ L2
• 

However, immediately on the post buckling path the load values are increasing toward 

the value 1.3JEiyGitf L 2
. The convergence of the iterative process is quite slow and 

the post buckling path seems to be in 5% error to the one shown in Figure 13 and to 

those reported by Argyris et al. (1979) and Simo and Vu-Quoc (1986). 

Elasto-plastic lateral buckling analysis of simply supported I-beams 

Kitipornchai and Trahair (1975b) have made an experimental investigation of the 

inelastic flexural-torsional buckling of rolled steel 1-beams. Their tests were carried 

out on full-scale simply supported 261 x ] 51 {TB 43 beams with central concentrated 

loads applied with a gravity load simulator. The 261 X 1.51 UB 43 section has a low ratio 

between the width and thickness of the flanges and so the beam's behaviour inhibits 

local buckling and allows lateral buckling to predominate. The end cross-sections of each 

beam were free to rotate about. the major and minor axes and t.o warp. They tested six 

beams, four as-rolled and two annealed beams. The effect of residual stresses was not. 

found to be significant which was also confirmed by the theoretical predictions made by 

Kitipornchai and Trahair (1975a) and by numerical computations in the present study. 

The reason is in high tensile residual stresses which inhibit the spread of plasticity in 

the compression flange, see Figure 16. The geometrical imperfections were found to be 

significant in decreasing the load carrying capasit.y compared to the predictions of the 

bifurcation loads of perfect. structures. 
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Calculated test beams are chosen to be those which buckled in the inelastic range , 

I. e . beams S2-10, S3-12 and S4-8 (S = simply supported) . The imperfec1.ion are included 

in the loading conditions so, that the point load was situated at. a small distance from 

the middle plane of the bea.m. Thr crusf;-SI"dion of the beam 261 x l.'i 1 UB 4:~, the finite 

element discretizations used and the residual stress pattem s are shown in Figure 14 . 

Calculated load-defiec.tion curves are shown in Figure 15. 

~2J J1 ~ lij Rd r 4x425 mm + 128.8mm tf 
tr. 

S3-12 L/2 = 1828.8 mm max - 121.600 

4x350 mm + 124mm h 
min - -136.260 

S2-10 L/2 =1524mm tw l 
MPa 

S4-8 4x275mm + 119.2mm 
L/2 =1219,2 mm 

.f-b~ 

Figure 14. Finite element meshes used and the cross-section 261 x 151 UB 43 data: 
h = 248.7 mm, b = 151.5 mm, ttl' = 7.67 mm, lf = 12.3 nun and d = 219 mm. Residual 
stress distribution (quartic polynomials) are the same as by Ki ti pornchai and Trahair 
(1975b) (Fig. 7, pp. 1340). E = 203 GPa, E1 = E / 35 (except one calculation for S4-8 

beam with E 1 = 0), O'y = 320 MPa, v = 0.3. 

Thermo-elasto-plastic analysis of steel beams 

Applications of thermally loaded steel frames are chosen mainly to permit comparisons 

with the experimental data. Due to the lack of test results of three dimensional 

cases, only plane frames are analyzed. Two different models for the temperature 

dependency of material parameters are compared. First model is based on the European 

recommendations for the fire safety of steel structures ( 1983). For this model the 

temperature dependency of Young's modulus E and the yield stress 0' y are shown in 

Figure 17. Poisson's ratio v and the tangent modulus E 1 are assumed to be independent. 

of temperature. In the second model, similar to the material model of Rubert and 

Schaumann ( 1985 ), a trilinear stress-strain curve is assumed. ln that. model the variation 

of Young's modulus, the lower yield stress crp and the upper yield stress O'y are shown 

in Figure 18. 

ln all subsequent calculations of the present. ~ t . udy a value of 12 ·1 0- 6 l /"C for 

the thermal expansion is used. Some calculal.iom; for a more arcura.t.e de!;cript.iou of the 

thermal expansion coefficient show neglible efl'ect in comparison to the use of it s constant 

value. The thermal expansion has variation from the value of 1 .2·10-'' .l ;oc t.o 1.7·10- 5 

l t C between the range of 20- 600 oc according to the European recommendations for 

the fire safety of steel structures. 
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Figure 15. Lateral buckling analysis of simply supported beams. Dashed lines indicate 
calculations without residual stresses and the dotted line (beam S4-8) is the case with 
no strain hardening (Et = 0, in all other calculations Et = E /35) Calculations with 
residual stresses are marked with solid lines. Black markers which are not connected 
correspond to the experimental measurements. Imperfections in the FE calculations in 
the figure on t he left hand side are: 84-8 e = 4 mm, 82-1 0 and 83-12 e = 2 mm; and 
in the figure on the right hand side: 84-8 e = 0.25, 1, 2, 4, 8 mm and 83-12 e = 0.25, 2 

mm. 

without residual stresses with residual stresses 

compression flange 

tension flange 

Figure 16. P lastic area of the cross-section at the integration point nearest the symmetry 
plane, beam 84-8 ( e = 4 mm) at load level 240 kN . 
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The only loading effect. is due to temperature change. The temperature increment 

for t.he following step is adjusted by requiriug the estimated norm of the displacement. 

increment. to be constant. Denoting 

where D.B is the temperature increment, the requirement for the next. step is 

which yields 

1 + ~1Ln0n _ 1). 
"V~ 

If an = 0 the equality D.Bn+1 = D.Bn holds. However, in numerical computations the 

temperature increment for the next step is determined from the approximate expression 

(125) 

Rubert and Schaumann (1985) have made experimental and computational 

analyses of simply supported IPE-80 beams with a concentrated load at. the midspan. 

Four different load magnitudes are used, P = 24 kN, 23 kN, 16kN and 6 kN for beams 

WK1-4. Corresponding utilization factors are P / P11 = 0.85, 0. 70, 0.50, 0.20, respectively. 

Present results of quasi static calculations are compared to the experimental results 

where the lowest value of the heating rate T = 2.67 K/min is used. According to the 

experimental results the effect of heating rate, which were between the values of 2.67 -

32 K/min in the experiments, is not significant. to the behaviour of the beams WK1 and 

WK2. For beam WK4, which has the lowest load, the effect of heating rate results in 10 

% difference in the critical temperature. A half of the beam is modelled with five linear 

elements using two short elements near the symmetry line. Five point and nine point 

Gaussian quadratures are used in the integration of the stiffness matrix and the internal 

force vector for flanges and web, respectively. The initial temperature increment used 

is 20 °C (as in all other examples in this chapter) and it. was automatically reduced 

during the heating process according to Equation (125). 

The results of the computations where the material parameters of the second 

model are used, fits very well to the experimental results in thi s particular example. 

Especially, the infuence of the slow decrease interval of the lower yield stress between 

the temperatures 300-500 °C is clearly seen in the deflection-temperature curves for 

beams WK1 and WK2, see Figure 20. This slow increa~e interval of the clispacement. 

has also been noticed in the calculations made by Rubert. and Schaumann but it. is not 

visible in t.he results obtained by Bock and Wemersson (1986) iu their calculations using 

the ADINA program. More examples are presented in Kouhi a et. a!. ( 1988) and Kouhi a 

(1990). 
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Figure 17. Uniaxial stress-strain relationship which is used in accordance with (a) ECCS 
model (model1) and (b) the model developed by Rubert and Schaumann (model 2) . 
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Figure 18. Modulus of elasticity and yield stress as a function of temperature. 

Dynamic elasto-plastic behaviour of a portal frame 

A portal frame, clamped at. its supports, with a mass fixed m the midspan of the 

horizontal beam, is subjected to an impact load perpendicular to the plane of the frame 

by a 0.22 lead bullet. Experimental results have been reported by Messmer (1987), and 

Messmer and Sayir (HiSS). The loading time have been between the range of 40 to 60 

p.s, and the measured shape of t.he load pulse is almost triangle, Figure 4 in Reference 

Messmer and Sayir (HlHS). However, the shape and the loading time variations (40-60 

p.s) have a little intluence to the response of the frame. In the present calculations 

the rectangular pulse, shown in Figure 20 (duration 60 ps and impulse 0. 72 N s ), is 

used. One half of the frame is modelled by using twenty equal elements. In Figure 20 

the lateral displacements of t.he impacted point are shown when the linear Timoshenko 

beam element is used in the computation. Both elasto-plastic and visco-plastic material 

models are used in the analyses. When the layered models are used the 7 x 7 Gaussian 
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Figure 19. Deflections of the midspan as a function of temperature for a simply 
supported beam. 
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quadrature is adopted. Two versions of the Perzyna's viscoplastic material is used. In 

t.\w first. onP t.hP viscopla.st.ic pa.rt. of t.hP st.ra.in rate has the form 

. up _ L,<; B ( (]' c _ 1) a EJ f 
£ .. - 0: ' 

'J (j OIJ'; · 
a = l Y J 

(126) 

and in the second one 

(127) 

where the parameters used are 1 = 40 1/s and p = 5. In equations (126) and (127) the 

notations f = f7e = J3]; are used. Perzyna has determined the material constants B 01 

from the experiments made by Clark and Duwez, Perzyna ( 1966). They are given in 

Table 4. 

Table 4. Material parameters B 01 in Equation (126). 

Q 1 2 3 4 5 

B 01 (1 / s) 337.53 -1470.56 3271.71 -3339.98 1280.06 

Figure 20. Displacement of the mass. Twenty equal linear Timoshenko beam elements. 
Solid lines correspond to the layered model computations with the 7 x 7 Gaussian 
quadrature. Dashed and dotted lines indicate computations where the sphere or the 
cube yield surface are used. The permanent experimental deflection was 20.7 mm. 
Notations; EP: elasto-plastic, VP: visco-plastic model (127), VP5: visco-plastic model 

(126). 
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It can be concluded that in this particular model the st ress resultant representation 

of t.he yield surface gives results which are in good agreement. with the computations 

of layered models. The permanent. deflections of the mass poiut. fit. quite well to the 

experimental measurements, Messmer ( 1987 ), for the elast.o-plastic material models. 

The viscoplastic model (127) gives considerably too small deflections, but the amplitude 

of the elastic vibration phase is in a satisfactory agreement with the experimental result 

(about 21 nun), while in the case of elasto-plast.ic models the amplitudes are too small 

(about 12 mm). 

In the computation with the yield surface (109) the first plastic hinge appears at 

the impacted point after the time of 29 J.LS and it disappears at. the time of 120 J.LS for 

a while. The bending moment reach again the fully plastic moment at the time 160 J.LS 

for duration time of 60 J.LS. There are also plastic deformations in the horizontal beam 

between the struck and corner points in distance 50-80 mm from the struck point, see 

Figure 21. It is also confirmed in the experiments, Messmer (1987). At the time of 

420 J.LS the plastic hinges in bending appear at the clampings for a time period of 90 J.LS 

and reappears again at the time of 840 J.LS. The frame swings out elastically after the 

time 3.59 ms when the plastic hinges disappears at. the clampings. There are also small 

periods of plastic deformation at the time 5.6 ms and between the period 6.4 to 6.8 ms . 

The computed bending moment histories, shown in Figure 21, are in agreement. with 

Messmer's theoretical calculations . 
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Figure 21. Bending moments in the horizontal beam, {a) 2.5 mm {b) 60 nun from the 
midspan. The meaning of the different line types are the same as in Figure 20. 
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