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SUMMARY: A numerical method for calculation of level curves is pre
sented. In the method the level curves are divided into a set of 
straight line segments, ~1hich can be plotted easily. The division is 
made in such a way, that a smoothness criterion is satisfied 1-1ith as 
fe1-1 line segments as possible . General aspects of finding level curves 
in an arbitrarily shaped region are discussed . Thereafter three tool
box algorithms , which can be used in solving the problem, are present
ed. The toolbox approach makes it possible to use the algorithms also 
in related problems, as in plotting the element mesh in finite element 
applications. Finally two simple plotting problems are solved using a 
program based on the algorithms. 

INTRODUCTION 

Examples of level curves can be found in maps in the form of contour 

lines ; i.e . curves with equal distance from the sealevel. Clearly the 

level curves serve as a simple and easily comprehensible 1·1ay to present 

three dimensional forms in tHo dimensions. A formal definition 1-10uld 

read A level curve for a function of t~10 variables is the set of 

points, where the function has a given value. 

If the level curve equation is linear in the independent variables, 

level curves can be obtained easily by solving for one of the vari-
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ables. In practice it is not always possible to find the level curve 

equation for a given function in analytical form. The reason is simply 

that there exists no general method for solving nonlinear equations. 

Other line of difficulties comes from the fact that analytical solu

tions - if obtained - are often multiple valued. That is, for a given 

function value and one coordinate value there are several other coordi

nate values satisfying the equation. Thus one must face the difficult 

task of choosing the right one. Furthermore it is often demanded that 

the level curves are confined to a given region. Because of these 

complications one is assured that finding an analytical solution in a 

complicated region is beyond the reach. However, numerical methods can 

be employed no matter the function or region type. The nonlinear nature 

of the problem prohibits the construction of a foolproof method, but 

with a proper algorithm and 1·1ith enough computational p01-1er one can 

calculate level curves for almost any function. 

Two different numerical methods are presented in references I 1 I 

and I 2 I. The method in I 2 I is based on dividing the region of in

terest into smaller regularly shaped subregions . The division is 

refined until the level curves intersects the boundaries of each sub

region just twice. Once a subdivision with the above mentioned proper

ties is found, the first approximation of the level curves is obtained 

easily by connecting the intersection points in each subregion with a 

line segment. The other method referred to is based on direct tracing 

of the curve. Namely if one point on the curve is known one can proceed 

along the curve by taking into account the fact that the gradient of 

the function is orthogonal to the curve. Just take a step 

perpendicularly to the gradient and another point is found, save a 

small error, which can be corrected as indicated in I 1 I. 

The scheme to be adopted here is basically similar to the tracing 

method in I 1 I. In spite of the same underlying idea the algorithms 

are quite different because the present method is intended to handle 

problems of a more general type. The main features not found in I 1 I 

are: 1) Automatic step length selection, which allows smooth curve 

representation with minimum data. 2) Proper handling of difficult situ-
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at ions encountered in tracing. 3) Avoidance of multiple trac ing of 

same curves by t1·10 simple rules. 

PROBLEM DEFINITION 

The aim is to construct an algorithm, which can be used in plotting 

level curves for an arbitrary function in an arbitrarily shaped bounded 

region in the plane described with rectangular Cartes ian x, y-coordi 

nates. To make the problem easier to handle the region of interest is 

divided into possibly overlapping subregions called elements or patches 

to avoid possible confusion v1ith elements in the finit e element method 

sense, in which subregions are in general nonoverlapping . Furthermore 

in every patch the curves are divided into straight line s e gments. The 

primitive object is thus a straight line segment. 

For each patch a local s ,r-coordinate system is defined so that in 

the s,r-plane every pair of points can be joined with a straight line, 

which does not intersect the boundaries. Shortly patches are convex in 

the s,r- plane. In the x,y-plane 

the patch can be of any shape 

depending on the form of trans

formation between the two coor

dinate systems. It is tacitly 

assumed that there exists a 

mapping, which maps the origi

nal patch in the x,y-plane into 

a convex one in the s, r-plane. 

It is well known that for exam-

r qi > 0 for 

ple conformal mapping provides Figure 1. Typical patch. 

a method for mapping almost 

arbitrarily shaped x, y-patch onto a unit square, v1hich certainly is 

convex. In practice one can use for instance isoparametric mappings of 

the finite element literature. 

A typical patch is shown in Figure 1. The boundary consists of piece-
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wise smooth curves. Corresponding to each curve one defines a so 

called boundary function qi(s, r ) in such a ~1ay that inside the patch 

the function value is strictly negative, outside the patch strictly 

pos i tive and on the boundary exactly zero. The patch can be thus iden

tified as the set of points where every boundary function has a nega

tive va l ue. Conversely the outside region can be identified as the set 

of points where at least one boundary function has a positive va l ue. 

The boundary consists of all the points where at least one boundary 

function has zero value and every other boundary function a negative 

value. 

From the point of vie1-1 of numerical calculations it is advantageous 

that the both coordinate values are of the same order of magnitude in 

the patch. Thus before numerical treatment one should cast t he problem 

into a dimensionless form 1~ith properly selected reference values . The 

dimensionless problem definition for one patch and one curve is as 

follo1-1s: Given functions 

f f ( s , r ) (1 ) 

X x (s , r ) ( 2 ) 

y y(s,r ) ( 3 ) 

i 1 , 2 ... ( 4) 

find a curve, on 1-1hich function f has a given va l ue fo . All functions 

are supposed to possess first order derivatives i ns i de a patch. The 

presentation i s natural 1-1ith functions ca l c ulated by the finite e l ement 

met h od , but with a little effort almost any l eve l c u rve plotting prob

lem can be cast into this form. 

Example. Let us consider a simple problem in 1-1hich the patch in the 

x , y-plane is bounded by t1-1o rays emanating from the origin and two ori-
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gin centered circles. The function to be plotted is f = xy. The re-

gion of interest is nonconvex whatsoever the angle between the rays, 

and a transformation must be used in order to cast the problem into a 

suitable form . One possibility is to identify the s ,r-syste m a s p o lar 

coordinates. Thus an equation set 

2 
f r sin (s ) cos(s) (5) 

X r sin (s ) ' ( 6) 

y r cos (s) ' 
(7) 

ql r - r 2 ( 8) 

qz r 1 - r (9) 

q3 s - s 2 (10 ) 

q4 s 1 - s (11) 

is obtained, where the meaning of the notations is obvious. For 

simplicity the equations are not made dimensionless as recommended 

above. Mapping ( 6) and (7) transforms the patch onto a rectangle in the 

s,r-plane. Substitution of expressions ( 6) and (7 ) into the original 

function to be plotted gives a representation of the f o rm (1). The 

boundary functions (8) to (11) are easily obtained as the region is a 

rectangle in the s , r-plane. The boundary functions are not unique. For 

instance any boundary function (8 ) to (11 ) multiplied 1-1ith a strictly 

positive function is still a boundary function but not necessarily as 

simple as the original one. 
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SOLUTION METHOD 

Before proceeding to the algorithms the solution idea is discussed in 

detail. To simplify the presentation, it is assumed that the boundary 

of each patch consists of straight line segments in the s,r-plane. As 

a consequence the data needed in the construction of the boundary 

functions consists simply of a table of corner point values of the 

local coordinates. A typical boundary function is in this case the 

coordinate measured from the corresponding line segment to the outward 

normal direction to the boundary . 

The level curves are traced by working first only in the s,r-plane 

as in I l /. Thereafter the curves in the s,r-plane are converted into 

the x,y-plane by using transformation functions (2) and (3). Thus in 

the finite element applications one can for example calculate the 

level curves for various actual x, y-patch shapes 1·1ith just one time 

consuming number crunching in the s,r-plane. In some cases, as plot-

ting patch boundaries, the presentation in the s,r-plane is known in 

advance and the tracing part can be skipped. 

General 

The notations used are given in 

Figure 2. The subscripts of the 

different local coordinate pairs 

refer to first, old, intermediate 

and new. The first point is sim-

ply the first point obtained on 

the curve. The old point is the 

origin of a local auxiliary rect-

angular Cartesian u, v-coordinate 

system, which is kept fixed until 
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the new point is found and then moved to a new position. In the be-

ginning the first point and the old point coincide. The direction of 

the axes of the curve fixed coordinates u and v are in the tangential 

and the normal directions to the curve, respectively. The intermediate 

point is an intermediate result in the search for the new point on 

the curve somewhere onwards from the first point and the old point . 

The connection bet\·leen the s , r-system and the auxiliary u, v-system 

is 

s = s 0 + cos (a)u- sin(a ) v (12) 

r = r 0 + sin (a)u + cos (a ) v (13) 

\·1here the notations refer to Figure 2. Using the fact that the 

positive v-axis is selected to point into the direction of the 

gradient of function f, the sine and cosine of angle a can be written 

as 

cos (a) (af } 1 
ar 0 

(af }
2 

+ (af }
2 

as 0 ar 0 (14) 

(af }
2 

+ (af }
2 

as 0 ar 0 (15) 
sin (a ) _ (af } 1 

as 0 

The solution idea is as follows: First one point on the curve is 

searched for . The search is performed between two given points inside 

the patch. Because the convexity assumption the search cannot lead 

outside the patch . If the point is found the tracing starts into the 

positive u-direction. A step is made by giving the u-coordi nate some 

predefined value. Then an iteration is performed along the v-direction 

in order to correct the error possibly made. Once a new point on the 
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curve is found it becomes an old point and the same procedure is re-

pea ted as far as possible. The points obtained on the curve are 

joined finally Hith linesegments. 

The two points used in the search of the first point are selected 

with some general knoHledge of function f in mind. In most cases there 

can be several level curves in the patch and the procedure must be re

peated several times. Usually one directs the searches at least along 

the boundaries by taking tHo successive corner points of the boundary 

as starting and end points. Because of the tracing procedure (always 

to positive u-direction) curves intersecting the boundaries twice are, 

however, traced just once. One must only make sure that any curve can 

intersect a search line only once. The requirement can be satisfied 

easily at least in conventional finite element applications. If the 

function can form closed level curves one must use some search lines 

inside the patch too. The strict avoidance of multiplicity of the 

level curves is not simple but can be covered in most cases by the 

rule : Discard any curve ending at the boundary. 

New v when u is fixed 

For a fixed u-value the v-value , which corresponds to the point on 

the curve, is determined using Ne1~ton 's method. Thus a new better 

value is obtained through the iteration 

v · = v - (f-f 0 ) I ~) 
( 16) 

in which notation := means substitution and fo is the function value 

to be traced. The expression for the partial derivative of f with re-

spect to v is 

af af sin(a) + cos(a) as ar (17) 
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The method will converge to the right v-value if the initial guess for 

v is good enough. The choice of the origin of the u,v-coordinate sys

tem makes it possible to use a good fixed initial value v=O. 

New u when v is fixed 

The value of u is updated during the iteration. The updating is done 

partly because of the iteration scheme. Namely if the guessed point is 

too far from the curve, one can not be sure of the convergency any 

more. On the other hand the smoothness of the curve in the s,r-plane 

determines the suitable step length u. It is obvious that a small u

value should be used if the curvature is large and conversely a large 

u will do with more or less straight curves. 

The absolute value of the cross product of the unit normal of the 

curve at the intermediate point and at the old point is taken as a 

measure of the direction change of the curve: 

g(u,v) ( 18) 

Actually the intermediate point is initially not necessarily on the 

curve but at some point nearby and the related normal direction given 

by the gradient is therefore only an estimation. For small function 

values the value of function g is approximately the same as the abso-

lute value of the angle between the normals in the s,r-plane. If the 

value is between given lo1·1er and upper bounds during the iteration 

nothing is done. However, if the value is outside the bounds an in

terpolation 

u 
(19) 

is performed in order to get a better value for u. The indices refer 

to lower and upper. The interpolation seeks for a u, which gives the 

11 



function the mean value of the bounding values. In the case of a 

straight curve the denominator is zero and the interpolation is modi

fied slightly by replacing the zero function value by a small positive 

value. Obviously the interpolation works well provided the curvature 

changes of the curve are not considerable. However, one can easily 

sketch c urves for which the updating scheme fails. Therefore the lin

ear interpolation is overtaken by a foolproof method 

u · = u/2 (20) 

after some nonsuccessfull interpolations. This emergency method leads 

finally to a g-value below the upper bound because at the old point 

(corresponding to u = 0) the value of g is zero. Every time u is up

dated, v is given zero value and the iteration starts from scratch. 

Out of the patch condition 

Function f is defined only in the 

patch, \~hich is determined by the 

boundary functions. Therefore when 

function f is evaluated one must 

make s ure that the argument values 

are legal and correct them properly 

if the iteration procedure for v or 

the guess for u gives noncorrect 

values for the l oca l s,r-coordi-

nates . 

Level 
.-.---curve 

Figure 3. Intersection with 
If the calculated point is boundaries. 

outside the patch, new s, r and 

u,v-values corresponding to the 

boundary are determined. Geometrically one moves backwards on a line 

between the old point (Figure 3 ) and the intermediate point. In prac

tice each boundary function is checked in turn. Once a positive value 
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is detected, a correction is made using the folloHing interpolation 

equations 

si {1-t) 51 + t 52 {21) 

ri {1-t) rl + t r2 {22) 

si {1-H) so + w s' i {23) 

ri {1-H) r 0 + w ' r i {24) 

in 1~hich the meaning of the different indices can be seen from Figure 

3. Parameters t and H are scaled to make the values zero and one cor-

respond to the end points of the lines. If the parameter values satis-

fying the equations are betHeen zero and one, an intersection point 

has been found. Once the correction is made, further checking of the 

boundary functions can be rejected because the goal is achieved. 

Curve end conditions 

The curve is traced as far as 

possible. Ho1~ever, the boundary 

may prevent from going on , a sad

dle point may break the iteration 

or the curve may be extremely 

badly behaving at some point etc. 
Figure 4. Closed curve condition 

All these cases have the common 

feature that the old point and 

the new point are very close together. Therefore the closeness 

these tHo points is taken as one stopping criterion. 

of 

In order to keep the number of points needed in the description of 
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a curve at minimum, one must have some kind closed curve criterion 

too. Otherwise the tracing of the curve can be in principle a never

ending task. A simple method emp l oyed here is described in Figure 4. 

The curve is taken as closed if the lengths of the vectors in the 

figure joining the first point and the new point and the first point 

and the old point are both smaller than the length of the vector join

ing the new point and the old point. Altogether the stopping condi-

tions are 

(25) 

(2 6) 

In the equations 1;1 stands for the distance and E . 
no ~s a small pre-

defined parameter . 

Conversion between s,r- and x,y-systerns 

The basic data to be converted is a straight line segment in the s,r

system. Depending on the coordinate transformation functions (2) and 

( 3) , ho>~ever, the straight line is more or les s curved in the x, y-

plane. Therefore the linesegment given as 

s = (1-w) s 1 + w s2 , (27) 

(28) 

is divided into smaller pieces. The indices in coordinates refer to 

the starting and end points of the segment and '"' E[O, 1] is the curve 

parameter. The purpose is to find the 1·1-values 1~hich provides a smooth 

enough representation in the x , y-plane. Because no assumptions con-
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cerning the coordinate transformation (2) and (3) is made one 

rely on an iterative method. 

must 

The conversion starts from the point labeled by 1, which is intro-

duced in the beginning as the old point too. A ne~1 point labeled by n 

is calculated by giving the parameter w a small increment. The deter

mination of a proper w value fol-

lows the lines sketched in the 

tracing part. A new better value 

for w is calculated from equations 

similar to (18) to (20) until the 

value of g function is satisfacto-

ry. If the value of function g is 

between the given lower and upper 

bounds, the new point becomes the 

old point and so on. Notations are 

shown in Figure 5. The indices in 

the x, y- coordinates refer to the 

values corresponding to the s,r

coordinates with the same indices. 

Figure 5. Conversion bet1·1een the 
local and the global systems. 

The conversion is stopped once the curve parameter has the value one 

corresponding to the point t~10. Of course the normal directions in 

equation (18) must be calculated in the x, y-plane. Using the chain 

rule one obtains 

(29) 

(30) 

The sine and cosine of the angle a which are the same as the 

components of the unit normal vector sho~m in the figure, can be no~o1 

written as 

sin(a) - (:~) I (31) 
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cos (0.) 
(32) 

ALGORITHMS 

The method described in the previous chapter is programmed using the 

FORTRAN language. The program consists of three toolbox subroutines 

which handle the number crunching part of the algorithm. The toolbox 

approach is preferred over a complete program because the form of the 

latter depends highly on the application. 

Correction algorithm 

The correction subroutine consists 

of a loop-escape construction over 

the boundary lines as shown in 

Figure 6. Once a boundary line is 

found, which intersects the line 

between the old point and the in

termediate point_, an escape is made 

and new corrected values for the 

coordinates are calculated. 

The decision about the correc

tion is made using the calculated 

t and w values from equations (21) 

to (24 ) . In practice one must solve 

a linear set of equations for two 

variables. Obviously the correction 

Figure 6. Correction algorithm. 

should be made only if the values of t and w are both between zero and 

one. 
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Tracing algorithm 

The tracing algorithm is shown in Figure 7. The algorithm consists of 

two main parts . In the first part a point is looked for, where the 

Figure 7. The tracing algorithm. 
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function has the given value. 

points using Newton's method. 

The search is made between tHo given 

If the point is found the tracing part 

of the subroutine is invoked but otherwise the second part is skipped. 

The first part consists of one loop escape construction over the maxi

mum number of iterations. From the beginning: The new local coordinate 

values are evaluated using a linear representation as in equations 

(27) and (28) The function value is obtained from equation (1). 

Finally a new value for 1'1 is calculated according to Newton's method . 

If the local coordinate values are more or less the same as the previ

ous ones an escape i s made, othen1ise the iteration continues. The 

range of possible 1-1 values is confined bet1~een zero and one corre

sponding to the end points of the search line. 

In the tracing part of the algorithm the local coordinate values 

are calculated from equations (12) and (13). The values obtained are 

checked and possibly corrected using the correction algorithm de

scribed in the previous chapter . Thereafter new function f value is 

calculated from equation (1) . A decision is made whether the curve is 

smooth enough or should one decrease the step length. If the curve is 

regarded smooth enough a better v is calculated according to equation 

(16). Otherwise v is given the value zero and u is decreased appropri

ately using equations (18) to (20). In that unfortunate case iteration 

starts from the. beginning. Convergence means that neH values ob

tained for s and r are more or less equal to the previous values. If 

this happens more iterations are not needed. A curve end is detected 

if the proceeding is prevented somehow or the curve is closed. The 

check is made using inequalities (25) and (26). 

Conversion algorithm 

The algorithm used for the conversion between the s,r-system and the 

x,y-system is shoHn in Figure B. The main loop is over the consecu-

tive s,r-coordinate pairs given as input in the form of a table. Every 

s uccessive coordinate pair in the table defines a line segment, Hhich 
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is divided by the algorithm into smaller pieces if necessary. 

From the beginning: The new local coordinate values are calculated 

from equations (27) and (28). The corresponding global coordinate val

ues are obtained from equations 

(2) and (3). If the global coor

dinate ·values thus obtained meet 

the smoothness requirements, an 

escape is made . Other11ise a new 

better w value is calculated and 

iteration for acceptable x, y-eo

ordinate pair continues. Once the 

end point of the line is detected 

(the curve parameter value is 

one), the next line segment is 

taken to be converted. 

The calculated x,y-coordi

nate pairs are saved by the sub

routine as a file in standard 

format. The output is buffered 

with buffer size given in the pa

rameter block. The file consists 

of variable number of blocks. 

Every block consists of a title 

record, which is follm1ed by the 

data. The title record itself 

consists of three integer num

bers: Number of data records in 

the data block, number of data in 

a data record (fixed for a given 

block ) and finally data type. The 

number, which defines the data 

type can be used in final pro- Figure B. Conversion a lgorithm. 

cessing of the plot data. One 

can, say , define element bound-
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ary as different type of data than level curves and use different 

linetype in plotting. 

EXAMPLES 

Two simple plotting problems are solved using the subroutines based on 

the algorithms. The toolbox routines TRACER and CONVER are assembled 

into tHo higher level subroutines called LEVC02 and FRAM02. The names 

refer to level curve and frame dra1·1ing for element type 02. The num

bering 02 refer to the fact that there can be any number of these sub

routines, each specialized to handle some type of elements. The sub

routines FRAM02 consists of a data statement, in which the table of 

corner point values in the s,r-system of a patch is given and a call 

for subroutine CONVER. The subroutine LEVC02 consist of two data 

statements and a loop over the search lines given in the other data 

statement. The other data state-

ment is the same as in the frame 

dra11ing routine and the other one 

defines the search lines. Inside 

the loop is call for the tracing 

subroutine followed by call for 

the conversion subroutine. 

The main programs used in the 

examples are very simple consist-

ing only of a block, in which the 

1 

r 

3 

s 

2 

data fixing functions (1) to (3) Figure 9. Definition of a patch. 

are read from the input file, and 

calls for subroutines FRAM02 and 

LEVC02. Actually the subroutines are meant to be an integral part of a 

finite element program. The output file generated by subroutine 

CONVER is plotted with the help of the DISSPLA subroutine library I 3 

/. Smoothing or options like that available in DISSPLA are not used. 

The shape of an element of type 02 is a triangle in the s,r-plane 
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as shown in Figure 9. At t he corner points labeled 1, 2 and 3 the 

values of the local coordinates are zero or one. The numbered poin ts 

are called nodes or nodal points. The definition of th i s coordinate 

system and the follo1-1ing functions are standard in fi nite element 

method literature and the details concerning the representation 1·1ill 

be skipped. I n the both prob l ems dea l t with the functions involved 

are 

f (1-r-s ) f 1 + s f 2 + r f 3 + rs(1-r-s) 2 7 f4 (33 ) 

X (1-r-s) x 1 + s x 2 + r x 3 + rs (1-r-s ) 2 7 x 4 (34) 

y (1-r-s ) y 1 + s y 2 + r y 3 + rs (1 -r-s ) 27 y 4 (35 ) 

Parameters f• 
J. ' 

Xi and Yi are the f unction and t h e x ,y-coordinate 

va lues at the noda l points. The functions multiplying these nodal 

va lues are called s hape functions. By varying the nodal values one can 

obta in different kind of l eve l c urves 

from straight to highly curved. In 

this case the search lines are from 

node one to node two , from node tviO 

to node three, from node three to 

node one and finally from node one to 

node fo ur . Any c urve can be fo und 

with t he use of these four search 

line s . 

The first example is the ca l c ula

tion of nine closed l evel curves for 

fo values ranging from 0.1 to 0.9 a nd Figure 10 . Closed level 

the boundary c urve. Parameters Xi and 
curves in just one element. 

Yi v1ere given s u c h va lues that the 

s hape of the resulting triangle i s rather irregular and the curvature 

changes in t he l evel c urves are cons iderable . The on l y nonzero f unc-
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tion parameter is f4 , which is given the value one. The parameters 

defining the smoothness of the curve were given values g 1 = 0. 05 and 

As can be seen from Figure 10 the behavior of the curves near the 

corners is abrupt, which makes the tracing of the curves not easy at 

all. The total number of calls for function f was 1520, and the total 

number of s,r-pairs 799 . That makes about 2 evaluations for a point. 

The total number of x,y-pairs was 803. The number of points needed in 

the description of each curve was between 85 and 94 in the s,r- and 

x,y-planes. The near match of the number of points for each curve in 

the s,r-plane is not a surprise if one takes into account the u updat

ing procedure. In fact every closed curve ~lith nonreversing sign of 

the curvature ~1ill be described in principle \<ith 21t/0. 075 = 84 

points. The divider is the mean 

value of the lo~1er and upper 

bounds given for function g. 

In the second example the 

region consists of four nonove r-

lapping triangles of the type 

02. The resulting level curves 

as well as element boundaries 

for certain selection of nodal 

values are shO\m in Figure 11. 

Each curve has a smooth repre

sentation within the elements Figure 11. Level curves in the 
and abrupt changes of direction case of four elements . 

are located at the element 

boundaries. The total number of 

function f evaluations was in this case 1591 and the total number of 

s,r-pairs needed in description of the curves 720. That makes about 

two evaluations for a point as in the first example. The total number 

of x, y-pairs ~1as 523. The number of x, y-points is smaller than the 

number of s, r-points because some curves are traced t\·lice but discard-
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ed because the curve found in the search from node two to node four 

has ended at the boundary. Every straight curve confined to one ele

ment is described by two points. The curved ones are described by 10 

to 36 points in the s,r- and x,y-planes. 

CONCLUDING REMARKS 

With the information gained from the examples one can conclude that in 

the method described the deciding factor determining the computational 

effort is the complexity of the function rather than the number of 

patches used. Thus to plot a simple function in a complicated region 

takes less time than to plot a complicated function in a simple re

gion. 

After all the algorithm proved to work well ~Tith simple as tvell as 

with complicated functions. The computational effort measured with 

calls of function f is as good as one could hope. No optimization of 

the performance of the subroutines was done and probably the execution 

could be speeded up some~1hat . The optimization, unfortunately, has 

usually an unwanted side effect of making the program hard to read. 

The listings of the programs described above are obtainable from 

the writer on request. 
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