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Abstract : The beam-element of ORAN is presented in the article. 
The formulation uses ordinary dimensional forces and displacements in 
contrast to the original dimensionless formulation . The flexural bowing 
effect is taken into account quite accurately even in the presence of 
moderate member end rotations. Also the stability effects due to the axial 
force are taken into account. This formulation, which is based on the 
assumption of the Euler-Bernoulli hypothesis, seems to be the most accurate 
existing formulation for the large deflection analysis of elastic plane 
frames. Nevertheless, it is rather unknown to most people doing research 
in the areas relating to this subject. Numerical results of various 
nonlinear problems are given. 

INTRODUCTION 

The analysis is based on the Euler-Bernoulli beam theory. Accordingly the 

shear deflections are neglected and plane cross-sections will remain plane 

and perpendicular to the centre-line after deformations. The bending moment 

is directly proportional to the curvature of the beam's centre-line. The 

technique for solving the governing differential equations for some frame 

structures is called elastica analysis. Usually the axial deformations 

caused by normal forces are neglected, but recently (8] they have been 

taken into consideration. 

Various numerical formulations for the analysis of geometrically nonlinear 

framed structures, using the finite element displacement method, have been 

presented in the literature. Many formulations are based on nonlinear 

strain and stress quantities . Numerical integration is necessary for 

computing the element stiffness matrices and nodal force vectors . The 

alternative approach is called the beam-column formulation. ORAN's formu­

lation uses explicit stiffness matrices and nodal force vectors, which is 

typical of the latter approach. Rather than give references to various 
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formulations, the writer will describe ORAN's formulation and references are 

given only to the other related beam-column formulations. 

The differential equation relating bending moment to curvature is 

linearized and using some additional assumptions one arrives at the well ­

known relationship connecting the element's end-rotations and end -moments . 

The stability functions in this relationship are functions of the element's 

axial force. The relationship used for calculating the axial force under 

the flexural deformations has been given by SAAFAN [10] and is somewhat 

less well-known. The bowing functions in this relationship are also 

functions of the axial force itself. 

An element's end-rotations and the change in its chord length are the basic 

deformations used in the relationships for determining the basic forces of 

the element . They can be easily calculated from the element's nodal 

displacements. The element's nodal forces are then determined in the global 

coordinate-system directions. The assembled nodal force vector from a~l the 

elements must then balance the external loading which is thought to be 

c oncentrated on the structure's nodes. The problem of the _ large displacement 

analysis is to find ~he deformed configuration of the ~tructure that will 

satisfy the system's force equilibrium equations. The accuracy of the 

formulation depends solely on the element's basic force-deformation 

relationships that were mentioned. 

Solution techniques for finding the equilibrium satisfying displacement 

configuration are, among others, the secant stiffness iteration and the more 

commonly used incremental Ne~rton-Raphson iteration. The latter uses the 

system's tangent stiffness matrix which is assembled from the element tangent 

stiffness matrices. The basic force-deformation relationship used here is 

very nonlinear and in order to achieve convergence rapidly during the 

iteration process one must use accurate tangent stiffness matrices. The 

tangent stiffness matrix of ORAN [1] is consistent (exact) with the basic 

force-deformation relationship and thus it provides optimum convergence 

properties. The simplified tangent stiffness matrix has been given by 

VIRTANEN & MIKKOLA [12]. The authors used the arc length method with the 

modified Newton-Raphson iteration . ORAN' s stiffness matrix was also used 

for the numerical results, and the effect of bowing was examined. LUI & 

CHEN [7] used the same simplified stiffness matrix in their study of frames 

with nonlinear flexible joints. 
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The original ~ormulation of ORAN is rewritten by the author in order to 

utilize ordinary dimensional forces and displacements . Some different sign 

conventions are also used. The computer program has been made by the writer. 

It is capable of analysing elastic-plastic plane frames and truss elements 

can also be included in the structures. The theory's extension has been 

given by KASSIMALI [2] and is not included in this article . 

THE BASIC FORCE-DEFORMATION RELATIONSHIP 

The linearized differential equation resulting from the Euler - Bernoulli 

beam theory is 

MA + MB 
Eiv" (x) - Pv - -MA + _:.:.. _ __:::_ 

L 
X (1) 

The curvature has been approximated by the second derivative of the 

deflection v(x) and the element's chord length is taken to be the original 

length of the element. The deflection v(x) is determined and, further, using 

approximations for the element's end-rotations, namely OA ~ v' (0) and 

05 - v' (L) the relation between end-moments and end-rotations is 

The stability functions c1 in (2) are 

cz -

~ (sin ~ - ~ cos ~) 

2(1 - cos ~) - ~ sin ~ 

~ (~ - sin ~) 

2(1 - cos ~) - ~ sin ~ 

when p < 0 (compressive axial force) and 

when p > 0 

~ (~ cosh ~ - sinh ~) 

2(1 - cosh ~) + ~ sinh ~ 

~(sinh ~ - ~) 

2(1 - cosh ~) + ~ sinh ~ 

(tensile axial force) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The parameter p is the dimensionless axial force defined by 

(7) 

The argument of the stability functions is 

¢ - tr J-1-P -~ (8) 

The element's moment-rotation relationship was determined using the original 

length of the element. Accordingly the arc length of the element is given 

by the integral 

L 2 1/2 

s- L + e 0 - I (1 + (v') ) dx (9) 

0 

The term e
0 

represents t he length correction due to the bowing effect . 

L 

I 1 2 
ec "' 2 

(v') dx ,(10) 

0 

The axial force of the element is 

p -
EA ( e + e0 ) 
L 

( 11) 

where e is the change in the chord length of the element defined by L! ~ 

L + e Lr is the element's chord length in t he deformed state. 

SAAFAN [10] has given the formula for the bowing term 

2 2 
ec- (b 1 (0A + Os) +b2 (0A- Os)] L (12) 

I t is deducible from the Eq. (10) . The bowing bi functions in Eq . (12) are 

therefore functions of the stability functions and are given by 

-(cl + c2) (cz - 2) 
bl - 2 8 1f p 

(13) 

b2 
Cz - 8(c 1 cz) ;!' 

(14) 
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When the axial force p ~ 0 , the denominators of the express ions for the 

stability functions and also that of the bowing function b1 are zero and 

computational difficulties are encountered in the evaluation of these 

functions using given formulas. The series expressions are to be used when 

JpJ < 0.1 . They were given by KASSIMALI (2] and are also to be found in (3] 

and in Appendix A. 

THE INCREMENTAL BASIC FORCE-DEFORMATION RELATIONSHIP 

The basic element force and the corresponding deformation vectors are 

rc - ( MA Ms p 

d0 - ( 8 A 88 e } 

The incremental force-deformation relationship is expressed as 

rc - kc de 

(15) 

(16) 

(17) 

The basic incremental stiffness matrix k
0 

in the relation (17) is obtained 

by differentiating the relations r 01· - r 01 (dcj, p(d0 j)) that were given by 

relationship (2) and Eq. (11) . The vectors and the matrix in (17) are 

de - ( d8A d8 8 de } - 8A 8s e 

rc - ( dMA dMB dP } - MA Ms p 

kcij 
arc i arc i ap - a de j 

+ ap adcj 

The basic incremental stiffness matrix was given 

Gz GlG2 Gl 1 
cl + 

H cz + H HL 

EI Gz Gz 
kc 

2 
~ 

L cl + H HL 

S Y M. 1 

HL2 

The G1 and H functions are 

Gl - 2 ( (bl + bz)8A + (bl - bz ) 8 B l 

Gz - 2 ( (bl - bz)8A + (bl +bz)8sl 

} 

by ORAN ( 1]. It is 
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(19) 

(20) 

(21) 

(22) 
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H 
I 

AL
2 (24) 

The last one uses derivatives of the bowing functions with respect to the 

dim~nsionless axial f orce of the element . They are 

(25) 

b~ 
2 

" (16b1 b2 - b1 + b2 ) 

4 ( c 1 + c 2 ) 
( 26) 

Here again the series expression is to be used forb{ when IPI < 0.1 . It 

was given in [2] and can also be found in Appendix A. It should be pointed 

out that KASSIMALI [2] used ORAN's sign convention for the axial force. 

The dimensionless axial force was q ~ - p and the derivatives in his article 

were taken with respect to this parameter . In articles ( 12] & [7 J the 

G~/H , G1 G2 /H and the second term in H were neglected in the ke matrix. 

Numerical difficulties have been experienced using this simplified matrix . 

Many elements have to be used for one natural element, particularly with 

quite slender beams, in order to avoid convergence difficulties with the 

Newton -Raphson iteration . 

THE INCREMENTAL FORCE-DISPLACEMENT RELATIONSHIP 

The element's deformations are related to its displacements by the 

kinematic equations 

de l ~ dg 3 - ( 0 - 8 o ) 

de 2 - dg 6 - ( 8 - 0 0 ) 

deJ - Lf - L 

(27) 

(28) 

(29) 

The 8 is the angle of the element'~ chord in the deformed configuration, 

and Lf is the chord length. They are expressed in terms of the element's 

displacements by the equations 

and (30) 

(31) 



Deformed 

i 
_ __I_ 

Original 

Xo ____ ._, 

X 

Figure 1. Kinematic relationship between deformations and displacements 

The increments of the deformations are related to the increments of ~he 

displacements by the transformation 

(32) 

The components of the transformation matrix Tcg are 

(33) 

The transformation matrix is 

[ 
-s/Lr c/Lr 1 s/Lr -c/Lr 0 

Tcg - -s/Lr c/Lr 0 s/Lr -c/Lr 1 
-c -s 0 c s 0 

(34) 

where c ~ cos 8 and s = sin 8 

The element's nodal forces are related to its basic forces by the transfor­

mation 

(35) 
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The components of t he element's tangent stiffness matrix are given by 

i,j - 1. .6 (36) 

By the differentiation of the Eqs (35), using the relations (17) and (32), 

one can develop the following relation between the increments of the 

element's nodal forces and displacements 

(37) 

The repeating subscripts in Eq. ( 3 7) are summation indices and the sub· 

scripts c and g should not be mixed with vector or matrix component indices. 

The incremental force-displacement relationship is given in matrix notation 

(38) 

The tangent stiffness matrix ~ defined by (38) is exact, meaning that it 

is derived from the basic element force - deformation relationship without any 

further simplifications . 

The T1 -matrices are 

-2cs 2 2 
0 2cs - (c2-s2) 0 c -s 

2cs 0 -(c2-s2) -2cs 0 

1 0 0 0 0 
Tl - T2 - 12 -2cs 2 2 

0 c -s 
f 2cs 0 

(39) 

SYM 0 

2 
0 

2 
0 s .-cs -s cs 

2 
0 

2 
0 c cs -c 

1 0 0 0 0 
T3 = 2 

0 
Lf 

s -cs 
2 

0 c 
(40) 

SYM 0 
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EQUILIBRIUM ITERATION 

The displacement vector D
8

, containing the structure's cumulative degrees 

of freedom is updated with the incremental displacement vector D
8

. The 

update is obtained from the Newton-Raphson iteration which uses the 

difference of the external loading vector and the nodal force vector R
8 

as 

the unbalanced force vector .. The nodal force vector is assembled from the 

nodal force vectors of the elements. The r
8 

vectors are calculated from the 

current nodal displacements. From Eqs . (27) .. (29) -> de , (2)&(11) -> rc , 

(35) -> r
8 

Appendix B. 

The Newton-Raphson iteration algorithm is described in 

The computation of the axial force P from the Eq. (11) has to be done 

iteratively for every element. Equation (11) can be rewritten as 

11"2 I 
K(p) - -2 P 

AL 

e ec ( P) 
- (L + -L-) - 0 

The iteration formula for the dimensionless axial force is 

~rhere the derivativ~ of the nonlinear function is 

(41) 

. ( 42) 

(43) 

The initial value is usually quite accurately known and the iteration will 

converge very rapidly. 

The convergence rate of the global Newton-Raphson iteration is dependent on 

the size of the loading increments and it is usually also good. For very 

slender structures the loading increments have to be kept small because of 

the strong influence of the axial force on the flexural stiffness . It is 

recommended that the slenderness ratio 

A - WA!I (44) 

where L is some typical length of the structure, have a value less than 

1000 . Experience has shown also that the modified Newton-Raphson iteration 

t echnique, in which the s true ture' s tangent stiffness matrix is updated 

only at the first iteration of every load step, is "to be avoided . Due to 
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the very nonlinear nature of the formulation, the resulting updated 

configurations will have quite different associated tangent stiffness 

matrices for the structure, ~nd the accurately computed unbalanced force 

vectors will bounce the structure from one erroneous configuration to 

another. 

An automat-ed path-following technique for passing the snap-through limit 

points and tracing the structure's behaviour into the post-critical range 

is required. The arc length procedure used in the numerical example of the 

stability analysis for calculating the structure's limit point accurately is 

described in [6] by FORDE & STIEMER. 

NUMERICAL EXAMPLES 

The computation has been done with a computer program which uses double 

precision variables. The program has been compiled by the DEC-Pascal 

compiler. It has the capability of analysing also elastic-plastic frames 

with the concept of introducing plastic hinges to the ends of the elements 

during the course of the analysis. It is based on KASSIMALI's article [2], 

and has been documented also in [4]. 

Large displacement analyses 

Example l. 

The cantilever beam with concentrated transverse load at its end 

This is perhaps the most commonly used test problem for various large 

deflection beam element formulations. The numerical results of the elastica 

analysis have been given in [5] by ~~TTIASSON. The axial deformation caused 

by normal force is neglected in these results. Accordingly the slenderness 

ratio must be chosen sufficiently large. With the values L- 1000, I- 1 and 

A- 1 , A- 1000 . The results at the load level PL2 /EI = 10 are 

w/L - 0. 81061 , u/L = 0. 55500 , 80 = 1.43029 rad . (45) 

The same problem has also been analyzed by HOLOPAINEN in [ 11.] using the 

force method. 
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w 

Figure 2. Cantilever with transverse point load at the free end 

Table 1 . Deflections at the 

PL2 / EI 

Elements 

1 

2 

3 

4 

8 

16 

- 10 L -

w 

800.57 

807 . 31 

809 . 60 

810.25 

810.59 

810.62 

free 

1000 

end for the 

). -1000 

u 

537.34 

551 . 52 

554 . 16 

554 .7 3 

554.98 

554 . 99 

cantilever beam in 

8o 

1 . 41484 

1.42879 

1.42994 

1. 43017 

1. 43028 

1.43029 

Fig . 2 

The load increments at the beginning of the analysis have to be small 

because >. - 1000. The increment 6P0 - 0.2 was used. The displaced 

configuration at the final load level P = 10 is such that the beam is 

loaded also with quite substantial axial force, and for lower slenderness 

ratios also some axial deformation would occur . The deformed configuration 

is shown in Fig. 3 . In computing Table 1, the cantilever was divided into 

elements of equal length. Better results could be obtained with fewer 

elements using denser discretization at the supported end of the structure. 
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Figure 3 . The deformed shape of the cantilever , PL
2
/EI - 10 

Example 2. 

The cantilever beam with moment ·load at its free end 

This loading deforms the cantilever into a circular arc. At the value of 

M- 2~EI/L the cantilever is bent into a closed circle of diameter D - Ljrr, 

L being the length of the cantilever. The structure is divided into four 

equal elements and the loading is increased gradually during the analysis 

to M - 2~EI/L . From Fig. 4 it can be observed that the end - rotations of 

each element are 45 degrees. 

The numerical values used for the analysis are L- 100, I - 1, A- 1, E- 1. 

The slenderness ratio A - 100. 

The free end node 5 is almost exactly coincident with the fixed end node 1 . 

This ~esult has been obtained also with the more simple ANSYS STIF3 elements 

[9]. The intermediate nodes 2,3 and 4 are very accurately on the circle 

whose diameter is D- 31.7205 The exact theoretical value is Dexact ~ 

31.83099 . The relative error is - 0.35% . The loading was applied in ten 

equal increments and the number of iterations was 8 for every load step . 
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2 3 4 5 

4 2 

3 

Figure 4 . The deformed shape of the cantilever , M - 2 ~ EI /L 

Despite the quite normal slenderness ratio, this problem demanded 

surprisingly small load increments and also many (8) iterations in each 

load step . This property may be due to the absence of the axial force. 

Some beam element formulations allow the application of larger load 

increments, but they are also always less accurate . This is the price that 

has to be paid for accuracy . 

The same model was also analyzed with the 8- element model and the relative 

error in the diameter of the circle was then only -0 . 02% . Increasing the 

load to M - 2*2~EI/L deforms the structure into a circle with the diameter 

Doxac t - L/(2~). The relative error in the computed value is ·now the same 

as before, namely - 0.35% . The coincident nodes in this nine node model are 

(1,5,9), (2,6), (3, 7), (4,8) . The accuracy of the formulation is much bet t er 

than is to be expected from the approximations that were made in t he 

development of the basic force-deformation relationship . This example 

demonstrates also that the formulation does not require any restrictions 

on the rigid-body rotations of each element. This should be obvious f rom 

the theory. 

Example 3 . 

The square frame loaded at the midpoints of opposite sides 

The structure is pictured in Fig . 5 . The displacement components in it have 

been tabulated in [5] by MATTIASSON as functions of the loading parameter 

PL
2 
/EI . These results are from the elastica analysis, neglecting the 

influence of the axial force on the deformations . The loading is primarily 

of the bending type and A does not need to be very large in order to get 

comparable results with the program . 
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Figure 5. Square frame loaded in compression 

The chosen values are L - 1000 mm, I - 4. 761905 mm4 , A - 1 mm2 and 

E - 210*103 Njmm2 . The slenderness ratio is L)~ z 458 

The largest loading value in [ 5) is PL2 /EI - 4 , and the corresponding 

elastica results are compared with the formulation used here. The elastica 

results are 

w/L - 1. 17703 u/L- 0.33754 (46) 

The computed values are given in Table 2 along with the results obtained 

with the general purpose FEM-code ANSYS using ordinary small-deformation 

large-deflection STIF3 elements. The symbol e in the table is the number 

of elements used in the model for one natural element. The final load could 

be applied by incrementing the loading in four equal increments, although 

better convergence would be obtained using smaller load increments . 

Table 2. Deflections w and u for the square frame, PL2 / EI - 4.0, 

L - 1000 ' 
A z 458 

e w, ORAN w, ANSYS u, ORAN u, ANSYS 

1 1139 . 42 1261.62 334.065 446.478 

2 1175.30 1160.58 337.510 356 . 305 

3 1176 . 70 1167.54 337.582 345 . 867 

4 1176.93 1171.26 337 .55 3 342.280 

8 1177.04 .. .. .. ---- 337.539 -------
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The computational model that was used utilized the frame's double symmetry. 

The displaced configuration is shown in Fig. 6 . 

Figure 6. The deformed shape of the square frame , PL2 /EI .- 4.0 

Stability analysis 

In the foregoing numerical examples the displacements have been fairly 

large. One very important feature of the nonlinear formulation is its 

ability to handle small deflection stability analysis problems with very 

few elements. ORAN's formulation makes it possible to use only one element 

for each natural element in a structure. 

Example 4. 

Two-bar frame, stability problem 

KOUNADIS (8] has analysed the frame in this example using exact elastica 

analysis. The analysis also takes the axial deformations into account. 

The critical loading in this structure is associated with a limit point 

instability phenomenon. According to the standard elastica analysis, 

neglecting the axial deformations, failure will occur with the bifurcation 

of the structure. The structure's geometry is shown in Fig. 7. The numerical 

values are : L- 100, I- 1, A- 0 . 16 -> \ = 40 , E- 100 . The critical 

load and the corresponding horizontal displacement of the corner are 

according to exact elastica analysis 
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PL
2 

EI - 1. 32617 , u == 2.3 (~7) 

t he displacement being t o the l eft . The bifurcation load from the standard 

elastica solution is 1.42196 , with no horizontal displacements prior to 

buckling . 

L 

L 

Figure 7. Geometry and loading of the two-bar frame 

The determination of the ultimate critical load is impossible with the 

standard load incrementing N-R iteration if it is desired to compute with 

as high accuracy as in the above results. The so-called arc length method 

procedure is used. The load-displacement path is followed automatically 

during t he analysis procedure . 

The nature of the failure can be seen from Fig. 8. The corner node's 

horizontal displacement is monitored in the vicinity of the critical 

loading . The model from which these results were calculated used 8 elements 

of equal length . The numerical results for the critical load and the 

associated displacement are given in Table 3. 

The values in Table 3 were computed using quite small arc-lengths . Using 

even smaller arc - lengths they might change a little. Especially the 

displacement u varies very much for even slight changes in the load factor. 

This can be seen from Fig. 8 . The critical load from the eight element 

model is the same as from the exact analysis. The small difference in the 

two element model is' probably due to the axial deformations . 
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1 . .3 4 

1 . .32 

1 . .3 

1.28 

~ ..:= 1 . 26 ..., 
.3 

1 . 24 

1 .22 

1 . 2 .. .. 

1 . 18 
0 2 4 6 8 10 

Horizontal cor"ner dl s ploc e ..-nent 

Figure 8. Loading PL2 /(EI) vs horizontal displacement u, L - 100 

Table 3. Critical load and displacement u for the two-bar frame 

by ORAN's formulation, L - 100, A - 40 

I Elements PL2 /EI u 

I 2 1. 326118 2 . 30 

4 1.326158 2 . 31 

6 1. 326166 2.30 

8 1 . 326169 2 . 30 

CONCLUSIONS 

The accuracy of the presented beam element formulation was examined using 

three large deflection problems and one stability analysis problem . The 

results were compared with exact solutions found in the literature . Non ­

linear analyses can be done with the element models using very few elements 

and therefore with only few degrees of freedom. The formulation is ve ry 

accurate and also practical to use in analysing f r ame structures . The 

tangent stiffness matrix is easy to modify for hinged c onnections and t he 

modified formulation can then be applied for structures consisting of 

beam or truss elements, or combinations of t hem . 

1 9 



REFERENCES 

1. Oran,C . , Tangent Stiffness in Plane Frames, Journal of the Structural 

Division , Vol 99, No. ST6, June ,1973, pp . 973 . . 985 . 

2. Kassimali,A., Large Deformation Analysis of Elastic -Plastic Frames, 

Journal of Structural Engineering, Vol 109,. No . 8, August, 1983, 

pp. 1869 .. 1886. 

3. Salonen,J., Yhteenveto ORANin epalineaarisesta tasopalkkielementista, 

Tampere University of Technology, Dept. of Mech. Eng., Applied Mech ., 

Research Raport 49, 1989, p. 64. 

4. Salonen,J . , Holopainen,P . , Kimmoplastisten tasokehien laskenta ottaen 

huomioon suuret siirtymat, Tampere University of Technology, Dept. of 

Mech . Eng., Applied Mechanics, Research Raport 44, 1988, p . 106. 

5 . Mattiasson,K., Numerical Results from Large Deflection Beam and Frame 

Problems Ana.lysed by Means of Elliptic Integrals, International Journal 

for Numerical Methods in Engineering, Vol 17., No. 1, 1981, 

pp . 145 .. 153 . 

6 . Forde,B., Stiemer,S., Improved Arc Length Orthogonality Methods for 

Nonlinear Finite Element Analysis, Computers & Structures, Vol . 27, 

No . 5 . , 1987, pp. 625 .. 630. 

7. Lui,E,M . ,Chen,W.F, Analysis and Behaviour of Flexibly-jointed Frames, 

Engineering Structures, Vol 8., Number 2, April, 1986, pp. 107 .. 118. 

8. Kounadis,A.N, Efficiency and Accuracy of Linearized Postbuckling 

Analyses of Frames based on Elastica, Int. J. Solids Structures, Vol 24, 

No. 11, 1988, pp . 1097 .. 1112. 

9. Kohnke,P . , Large Deflection Analysis of Frame Structures by Fictitious 

Forces, International Journal for Numerical Methods in Engineering, 

Vol 12, No . 8, 1978, pp. 1279 .. 1294. 

10. Saafan , S., Nonlinear behaviour of Structural Plane Fr ames, Journal of 

the Structural division, ASCE, Vol 89, No. ST4, Proc Paper 3615, 

August, 1963, pp . 557 .. 579 . 

20 



11 . Holop~inen,P., The General Theory of a Suspension Cable, Doctoral 

Dissertation, Helsinki University of Technology, 1975, p . 65. 

12. Virtanen,H., Mikkola,M., Tasokehien geometrisesti epalineaarinen analy­

sointi, Rakenteiden Mekaniikka, Vol. 18, No 1, 1985, pp . 53 .. 68. 

APPENDIX A 

The series expressions [ 2] of the stability functions are 

2 2 - ...1L 4 2 1 6 3 
cl ~ 4 + 15 1r p 6300 1r p + 27000 

1r p (Al) 

2 - _l_ 2 13 4 2 - _1_1_ 6 3 
c2 ~ 1r p + 1r p 1r p 30 12600 378000 (A2) 

The series expressions of the bowing function b1 and its derivative bj are 

b ~ 1 - _1_ 2 1 4 2 
1 40 2800 1r p + 168000 1r p 

37 6 3 
388080000 1r p 

b' 1 
- _1_ 2 

2800 1r 

1 4 37 6 2 

+ 84000 1r p - 129360000 1r p 

(A3) 

(A4) 
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APPENDIX B 

The algorithm below ii given to clarify the Newton- Raphson iteration and 

the incremental load-increasing procedure. 

REPEAT 

Pg - Pg + APg - increase applied load vector 

i - 0 ~ is the nodal force vector of the previous 

converged load step. 

REPEAT - NR-iteration loop 

0 i -·t· ~ 
l 

0 i 
kg - assembly procedure 

pg - ~ -~ ADi +t g - solution - > 

i +t Di ADi +t Dg - + g g - update displacement configuration 

i +t i +t 
IF converged(Dg , ADg ) THEN next_loadstep - TRUE 

-·t 
l 

IF wanted print results 

i - i + 1 

UNTIL next_loadstep 

UNTIL end_of_analysis 

- nodal force vector 

-> -> 

The arc length method is based on the idea of tracing the load-displacement 

response in the load-displacement space by the constant arc length steps. In 

the NR - loop the applied loading is changed by the restriction algorithm. 

The details can be found in [6] . The convergence characteristics are better 

than in the pure NR-iteration and convergence should be obtained also with 

the modifi ed Newton-Raphson iteration. The drawback is for the user to not 

be able t o control the applied loading anymore . This is done automatically 

by the constant arc length restriction . 

Jarmo Salonen, dipl.ins., Tampereen teknillinen korkeakoulu, 
Konetekniikan osasto, Teknillisen mekaniikan laitos 
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