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ABSTRACT: A c!assroo•n-type note concerned with a single degree of freedom system 
is given. The structure (the upper string) is supposed to behave linearly and elastically. 
The support (the lower string) can behave in a non-linear way . Static and dynamic cases 
are considered. Some general conclusions are found with this simple model. The initial 
stiffness of t:1e structuce is the same than the final one in the critical state of the 
support. The period (or the frequency) of the structure with the non-linear unilateral 
supt)Ort in the free vibration is strongly dependent on the initial amplitude. The 
amplitude is not a unique function of the period. 

INTRODUCTION 

Structures are in many cases supported with unilateral supports, i.e. supports which 

cannot assert tensile forces. In piping problems the supports are unilateral but they are 

located on both sides of the structure. In the following the supports are located on one 

side of the structure only. This is the case in many civil engineering problems. The 

supports are also often pointwise and thus the contact problem is in discrete form. If 

there are many potential contact points (points where contact is po,;sib!e) the solution 

o£ the problem is obtained usually numerically. The most used methods are: 

!. Direct solution of the complementary problem. 

2. Minimization of the corresponding energy functional. 

3. Solution of the corresponding saddle point problem. 

In a forthcoming paper the cases described above are considered but the present 

paper deals with the simplest case: the system with one degree of freedom. Figure I 

presents two examples. Several phenomena can be described with this simple model and 

the exact solution is easy to derive. Many features of the problem still remain open 

especially in the dynamic loading case (effect of damping, forced vibration, the mass of 

the su pport etc.) and wheri there are frictional forces on the supports. Recently 

Gawecki has found son1e :;irnilar results as those presented in this paper, but the 

structure was much more complicated (Gawecki, 1986) than it is here. 
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Fig. 1. Elastic structures with unilateral supports . 

In this note th~ structure is considered to be linear and elastic with small 

deformations. The support is frictionless and unilateral. The support may behave in a 

non-linear way. Static and dynamic cases are handled . 

STATIC CASE 

Figure 2a presents a simple elastic and static model with elastic constants k and K 

and with an initial gap h. The lower string (the support) is supposed to be elastic 
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Figure 2. Linear support . 

according to Fig. 2b (the force P is positive if compressive). If the initial gap h is large 

the (F, u)- curve is linear in loading and unloading (Fig. 2c) . In the following the upper 

string (the structure) is considered to be elastic and linear in every case. If the initial 

gap h is small or the force F is large the (F, u)-curve is of the type presented (curve 1) 

in Figure 2d. It is seen that the (F, u)-curve is not linear because of the geometrical 

11on-ti,1earity in the boundary conditions. The (F, u)-curve is a linear one (curve 2, Fig. 



2d) if the initial gap h=O. Figure 2d presents also the (F, u)-curve (curve 3) when the 

lower string is rigid (K = co). 

Consider next the case where the lower string buckles elastically with the critical 

force P (Fig. 3a). Figure 3b presents the (F , u)-curve for this case. The cr itical 
cr 

deformation v is usually negligible small in the buckling case. Figure 3b presents also 
cr 

the (F, u)-curve in this case (the dashed line). Some remarks can be made on this case. 
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Figure 3. Buckling supper t. 

Firstly, the (F , u)- curve would not be linear although the initial gap would be zero. This 

is due to the non-linear behaviour of the lower string. Secondly, the final stiffness (with 

large loading F) dF/du is the same than the initial stiffness (with small loading F) 

independently on the behaviour of the lower string provided that the lower string 

reaches its critical load i.e. dP/dv = 0. Thirdly, the final (F, u)- curve can be calculated 

directly. The point of intersection between the final (F, u)-curve a;1d the line F = 0 

gives the value u
0 

which can be calculated accordingly to Fig. 3c. In many practical 

cases the initial and the final (F , u)- curves are those which are needed in the design 

procedure. As seen these can be evaluated if the initial stiffness and the displacement 

u are known. 
0 

Figure 4-a presents the behaviour of an elastic-plastic and ideal plastic string in 

loading and unloading. The corresponding (F, u)-curves are presented in Figure 4-b . It is 

seen that now the (F, u)-curve is no longer unique. The final (F, u)-curve is dependent on 

whether there is loading or unloading. Hence the forernen tioned method to calculate the 

final (F, u)-curve still holds provided that the displacement u is calculated according 
0 

to Fig. 3c in loading. 
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Figure 4. Plastic support. 

In the elastic-plastic case it is also important to know the number of load cycles. Figure 

5 prese11ts the curv·~s for these cycles and it is seen that the initial and the final (F, u)­

curves are the same as in the previous case. Yet it can be seen that the shaded area in 
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Figure 5. Three cycles. 

Fig. 5b is a certain transform from the shaded area presented in the Fig. 5a. The similar 

result holds for a ll the previous cases. 

By the generalization of the forernentioned cases it is seen that if the supporting 

structure behaves in some non- linear way so that there exists the critical point where 

the equation dP/dv = 0 is valid (Fig. 6a) then the final (F-u)-curve never exeeds the 

linear (F-u)- curve determined by the method presented in the prev ious cases (Fig. 6b). 
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Figure 6. Non-linear support. 

DYNAMIC CASE 
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Consider the case presented in the Fig. 2a but now the mass rn of the upper string 

(the structure) taken into account. It is also supposed that the lower string (the support) 

can buckle elastically (Fig . 3a). It is seen from the Fig. 3b that the structure becomes 

first stiffer when the displacement is increasing and then the structure reaches its final 

stiffnes~ which is the same than the initial stiffness of the structure. If the initial 

amplitude o = u(t=O) is smaller than the initial gap then the response of the structure in 

free vibrations is as shown in Fig. 7 ( damping is neglected). 
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Figure 7. Small amplitude. 
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The period of the vibration is 

T "' 2 n /"in7k. (!) 
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If the initial amplitude is in the range h < o ~ h + "cr then the response of the 

struct•Jre is of the type presented in Figure 8. 
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Figure 8. Medium amplitude. 

It is seen that part of the time the structure vibrates with the period T 1 = 
2nl m/(k+K) and the rest of the time with the period T 2 = 2n/m/k. After some simple 

calculations the period T of the vibration (the calculations are left for the readers as an 

exercise) is found to be 

rm-- .....,,:..:.:.kh~~ · 
tl :,I k+i< arc COSK(o -h)+k6 ' 

r,;;-:_ t cK<o -h)+ko /K+k . IK+k 
t2 =-' .k arc co (K+k)h- k smv' ·~ 

(2) 

It can be seen that the period is now smaller than in the previous case. It is also the 

sa1ne if the initial amplitude is positive or negative. When the support is rigid (K = oo) 

this case is impossible if o > h. 

If the initial amplitude is large o > h + v cr the response of the structure is as 

shown in Fig. 9. It is seen that now three separate times can be distinguished when the 

structure is vibrating freely. After some calculations the period T of the vibration is 

found to be 
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Figure 9. Big amplitude. 

T = 2(t l + t 2 + t 3 + t 4), 
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t 1 = .; k arc co p +k 0 , 
cr 
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A = -~ ( o + ~r) sin~ 1, 

Kv +k(h+v ) 
B - __£_ ___ S.!:_ 

- K+k ' 

I 2 2 r= A +B. 

The period is now longer than in the previous case but shorter than in the first case. 

(3) 

Some limiting cases can be easily derived for the problems studied but this is not 

done in this study. The most interesting thing fo und is the fact that the period of the 

f ree vibrat ion of the structure depends on t he initial a mplitude according to egs (1)-(3). 

On the other hand the amplitude is not a unique function of the period (or the frequency 

1/T) as seen in Fig. 10. Figu re 10 presents the "backbone"-curve of the structure . 

This non-uniqueness makes the calculation procedure difficult when solving the 

problem of forced vibration as stated by Gawecki, 1986. Gawecki presented also one 
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backbone-curve, but it was firstly (h < o < h + "tr) on the other side than that 

presented in the Fig. 10 after the linear part of the curve ( 0 ~h). Gawecki studied the 

case where the support (the lower string) is rigid and the structure (the upper string) is 

uC 8 ) 

Figure 10. Backbone-curve. 
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elastic-plastic. This may cause the structure to become less stiff before the gaps are 

closed a11d the structLire then stiffens afterwards. Also the limiting case, where the 

initial amplitude o is very large, is quite different from the case studied here compared 

to that studied by Gawecki. Because the final stiffness of the structure is the same than 

the initial stiffness then in the limiting case o + oo the period of the vibration is equal 

to the period in the case o ~ h i.e. the case without the support. 

CONCLUSIONS 

The final stiffness of an elastic structure with a unilateral support is equal to the 

initial stiffness of the structure if the final stiffness is defined as the point where the 

support reaches its critical state dP/dv = 0. The stiffness of the structure has a 

significiant effect to the free vibration of the structure. The period of the structure is 

strongly dependent on the initial amplitude. Also the amplitude is not a unique function 

of the period. Many of these conclusions seem to be quite obvious but the author has not 

found them in the literature. Perhaps some of them can be found from elementary 

exercises in structural mechanics. 
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