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SUMMARY: Behaviour of the girder-stiffened suspension bridges with geometrically
nonlinear parabolic cables will be analysed in this paper. The common assumptions
about the linear elastic strain-stress dependence of the material, absence of
elongations and horizontal displacements of hangers and balancing of the initial
vertical load by the cables only, have been taken into account. Also numerical
examples are presented.

INTRODUCT [ ON

Behaviour of the girder-stiffened suspension bridges with geometrically nonlin-
ear parabolic cables will be analysed in this paper. The common assumpticns about
the linear elastic strain-stress dependence of the material, absence of elongations
and horizontal displacements of hangers and balancing of the initial vertical load
by the cables only, have been taken into account.

For the initial state of equilibrium of the cable we have

dz (1)

where Po is the initial vertical load, Ho is the inner force horizontal component
of the cable, and z and x are the initial coordinates of the cable.

By the action of temporary loads we may write for the cable (Figure 1)

2 2
HEZ + S5 = p + p! (2)
dx dx

and for the stiffening girder

£l 4 = pn (3)

where p' is the part of the additional load, balanced by the cable, p' is the rest

of additional load, balanced by the stiffening girder, H is the summary inner force
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horizontal component of the cable, w=w(x) are the vertical displacements of the

cable and the stiffening girder equivalently, and El is the bending rigidity of
the stiffening girder,
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Figure 1. Suspension bridge with nonlinear parabolic cable.

By summing the equations (2) and (3) we may present the condition of equilibri-
um in the following form

cl4 dzz d w
hid :
Ei—-H-H(—'2—+—2) +po+p'+p'=0, (4)
dx dx dx
2_ EI
If we let p denote the sum of the dead and the whole temporary load and ¢ = TR
we may write
dhw _ dzw 1 dzz _b (5)
b 2 T2 7 EI
dx ¢ X c dx

To solve the differential equation (5) by the given initial cable form and
boundary conditions we have to determine the value of the coefficient c¢. This
value is related to the cable deformations and is to be found from the compatibil-
ity condition of its relative elongations.

This condition may be written as the
equation of equality of geometrical and elastic elongations:

H-H W2
_ 1 [du,dwdz 1 EE)J -8 [140972] (6)
az,2 [ dx " dx 'dx T 7 dx EA [ 7]

]+(H;

where u is the horizontal displacement of the cable and EWAi is the rigidity in
tension of the cable.

After integrating the equation (6) for symmetrical loading over the half of the
cable span we have
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The first member of the equation (7) represents the horizontal displacement of
the supporting point of the cable. On the other hand, the displacement concerned
may be expressed as the product of the increment of the cable force and the shift
of the support under the action of the unit force. In the case of vertical pylons

and the inclined anchor cables (Figure 2} we have

(H-H )b
f A dx = (8)
o EZAzcos 8

where b is horizontal projection of the anchor cabie length, B is the inclination

angle of the anchor cable and E2A2 is the tension rigidity of the anchor cable.
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Figure 2. Suspension bridge with vertical pylons.
ACTION OF THE UNIFORMLY DISTRIBUTED LOAD

For the parabolic cable the co-ordinates x and z are connected by the quadratic

equation

z = fleaz . (9)

Taking into account the boundary conditions

dzw
w=10 and — = 0 by x = ta
dx
aw _ g and giﬁ = by x = 0
dx 3 Y
dx

we may write the solution of the equation (5) in the form



w _ .pac f Eh, _Chxley o2, 2]

F e Gere D[P 0 a0 - D] (10)
The corresponding derivatives

dw Eac2 X _ ¢ shx/c -

= ( T (= - = EFE?E) (11)

d2w EE% 2f chx/c

L = E8 1 . SEre

2 E 24 - sl f1e)

To integrate the right-hand member of eguation (7) it is useful to develop the

expressicn in the square brackets as a series in the powers of the function

(QEJZ _ hfzxz
dx’ &
So we may write
ar 3/2
[+ & 2} dx = a1 + 26%/a% « 6858 - ugbrra o . (13)
)

In the real conditions f/a = 1/4 and we may neglect the third and the next members
of the series (13) as small values in comparison with the unity and the right side

of the equation (7) takes the form

H-H  a 3/2 (H-H )a
) dz 2] ~ o 2,2
3 A] E]; [ J dx *W(T + 2f /a ). (‘H})

Taking into account (9) and (11) we get after integrating the second member of

equation (7)

a 2 3 2 2 3
dw dz 1 dw _ Lt a~ _ ac ac 2a ¢ a
S @&t 700 dx 2 gt e th D
2 3 2 2 3
2pfc” a”  ac”  ac 2a _ ¢ a
+ E|az (6 e ae T— th e th C) + (15)
2 3 2 3
pc (2,3 Sac ac 23  b¢ a
+(EI)(E_ 5 +1+_—th chthﬁ

Now the equation (7) may be written as follows

4
2 2 a c3 a El{1+0) a2 Po? (1+y)
—3' H—(]"th ) "—3th— +——*2 —2"—*—-—*3 =
5 a £ 26,A,F7 T 2F A f



= B2 Ei {4 EE—+ 2 EE f=thtd) = 6 Sk 2 i
T2EIF 2| 2 2 c 3 c | (16)
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e T ls 7 2 c 3¢
a a a a
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where Y o= Zfz/a2 +-——LAL——?T-.
aEzAzcos B

The solution of the problem involves the determination of the coefficient c
from the transcendental eguation (16) and computation of the inner force horizontal

component H = cin and the vertical displacements parameter W
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The bending moment of the stiffening girder is expressed as

2
Moe-gl S =
dx a

Z2ELF 2 chx/c
(== - pc) (1 - Cha/x). {18)

For the approximate solution of the problem it is useful to prescribe the dis-

placements function in the form

which satisfies the boundary conditions.
The compatibility condition of the cable elongations (7) may be written now

in the form
eA WP
o= — L (B D), (20)
16a” (1+y) f ™ '

From the conditions of equilibrium (1)...(3) we have

2 2 4
d 'z d w dw _
(H HO)E*'H-;;Z* El;}:—p1 (21)

where p, = p' + p' is total vertical temporary load.

Taking into account (19), (20) and (21) we may write
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8p au(]+$) ) 6Lp ah(1+w)
+_2L3_c05%5}=_&_l_3____ (22)
nE A a TE A

Using the Bubnov-Galerkin procedure we get the equation for determination of

the displacement parameter in the form

3 2 4 4
i S [20#8 LG | o2 (TH¥hy v 256py2 (140) (23)
£ 03¢ 2 e f leae 1T niE A

Now the horizontal component H of the cable force may be computed from the con-

dition of compatibility (20)

4E]A1FZ W oo
H=H +_2*-“— ‘f—('f'i*‘ér?—). (24)
ma” (1+y¢)

The bending moment of the stiffening girder

2 2 w
_ .y 9w _mEIf "o TX
H <El 5 = 2 o8 egs 5, (25)
dx ha

LOADING THE SUSPENSION BRIDGE BY UNIFORMLY DISTRIBUTED LOADS ON THE WHOLE AND
ON HALF SPAN

Let us denote Po the initial vertical lcad, balanced by the cable; P=P,*P;
the sum  of initial and additional load, applied on the whole span; Py the
additional load, applied on the right half of the bridge span.

In this case we have the condition of equilibrium in the following form:

for the left half of the span (x < 0)

4 2
dw 1 d'w Zf
sy A wihd ik (26)
dx ¢ dx
and for the right half of the span (x »>0)
dhw 1 P 2 ks Jg 553
AR e Ak i /
dx c dx ac

The equaticns (26) and (27) have to be solved under boundary conditions demanding
absence of vertical displacements and bending moments at the supports and equality
of displacement and its derivatives in the middle of the span.

So we get

by x < 0
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For the middle of the span
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The bending moment of the stiffening girder
by x < 0
X X X
dw 2EIf 2 ChE p2°2 a Shg Chg
M=—E|$—( 7 = )(]"—*a}" 7 (Ch-&-‘])(_—a'F"g
a ch= sh—  ch=
g c c
by x >0
X X X
2E1£ 2 Bhe By 7 e a She
M= ( 7 " bPc )1 - ——EJ - 12( = ——EJ+(ChE-" 1)(“*E =
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L Elfy1/2 S T
Coefficient ¢ = (ﬁ_) is to be found from the compatibility condition of

elongations, which may be presented in the following form
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For the approximate caleculation of displacements and inner forces of the bridge
it is useful to distribute the load into symmetrical and antisymmetrical parts.
If we denote as above Po the initial load, Py the additional load over the whole
span and Py the load on the right half of the span, the symmetrical part of the
additional load will be p. = p]+0.5p2 and the antisymmetrical part pt=0.5pzsgnx.
To calculate the bridge under the action of the first part of the load formulas
23, 24 and 25 are to be used, changing the load Py to p_. For the second part of
load p, we may approximate the vertical displacements by function
L TX
w = =w,sin —=, (34)
From the compatibility condition of the cable elongations we may write
¢ By
o o, et (35)
ha™{1+y)

where H] is the inner force horizontal component of the cable under the action of

the loads Py and P,
Now,using the condition of equilibrium, we get an equation for determination of

the displacements parameter W in the form

4 i
w13 LET (1+8) z(po+p5)a (1+m)] Wy 16p 3 (1+9)
73 lear? " Tea? PR Peae (36)
1 1 111 111
where in the value f1 = f+w0 the displacement under the action of the first part

of the load P is to be taken into account.

The bending moment of the stiffening girder

2 Elf, w
M= - El g—g =B Lo LadmIE (37)

dx a 1

The summary displacements and inner forces of the bridge have to be found by

summing their values, found for the correspending parts of loads:

X . oTx ;
W= mw Cos oo wisin (38)
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iy
M = haz T 80 5 + > ?T'SJH : (40)

NUMERICAL EXAMPLE

Let us have a suspension bridge in the form of pedestrian overpass with the
following parameters:
1) the middle span 1 = 2a = 45 m
6 m;
3) the side spans b = 15 m, tgh = 0,4
k) the rigidity parameters of the stiffening girder (I 60 GOST 8239-72)
E = 0.27-106 MPa, | = 75010 th;
5) the rigidity parameters of the cables (@ 52 GOST 7676-73) E] = Ej = 0.16-106 MPa,
A1 = AZ =19.6 sz;
&) the loads of the bridge
p, = 2.0 kN/m - the initial load,

]

2) the sag of the cable f

o
P = 2.0 kN/m - the dead load,
Py = 10.0 kN/m - the live load,

The whole span under the action of maximal load

For the exact analysis we have the calculation parameters (by p = Po t Pyt Ry

= 14.0 kN/m) ;

bE_ A
vo=a2rfsat e — Ll 915
aE2A2cos B

i
pa {1+y) 1
D__s“ = 0.00725 ; ﬂ'*% = 0.02673
2€,A, EAF

N
gg—If = 1.8982,

From the transcendental equation (16) we find % = 0.7514, ¢ = 16.91 m and

EL _
H = =5 = 551 kN,
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Now we get from (17)

W
o]

ks 0.03073 and W= 0,184 m.

From (18) we find the maximal bending moment at x = 0
max M = 136 kM/m
and the corresponding stresses

3
- max M-h _ 13610 'D‘% = 5b.4-10%s = 5h.k Mpa.
2-75010-10

By the approximate analysis the calculation parameters have the values

i
8p a (1+y)
L1;‘”)=0.10692; e = 0.01175
E.A T T E_A f
11 11
4
256(p1+p2)a (1+y)
z 3 = 0.07276.
T E A f
11
From the cubic equation (23) we have
Yo
- 0.0310 and W = 0.186 m.
After that we get from (24)
2 2
P0a hE1A1f wo( WB Wo) g Lt
H = + —(1 + —) = 84 + = 550 kN.
2f Wa2(1+w) f B T

The maximai bending moment of the stiffening girder is
2 w
BEIL -9 o i3 Kt
i 2 f

a

max M =

Thus, the approximate analysis gives the cable displacement and inner force,
very close to the exact values, but the approximate bending moment differs from

the exact value about 5 %.

The right half of the span under the action of live load

The parameters of the compatibility equation of the cable elongations (33) by

P=pPy,* P = 4.0 kN/m and p, = 10.0 kN/m have the values



4 .
Po? (144 Er1{1+.)

—— = 0.00725 ; S - 0.02673
2E A f EAf
1™ 17
pa“ p "
ZETE - 054234 ; E%T? = 1,3558,

Solution of the transcendental equation (33) in this case gives

C_ a_
— = 0:.9295; = = 1, 07585 and

2
H = E%-: E% §§ = 360 kN
From the equations (28) - (32) we find displacements and bending moments of the
stiffening girder:
w=0.019m by x = -0.5a,
w=0.107m by x =20,
w=0.171m by x = +0.5a,
M = -220 kN/m by x = -0.5a,
M = +124 kN/m by x = 0,
M = +342 kN/m by x = +0.5a

For the approximate solution of the problem we have to determine the parameters

w and w., from (23) and (36), respectively, and to compute displacements and inner

forces from (38), (39) and (40).
The first part of the load is characterized by the load parameter (ps =2.0 +

0.5 « 10.0 = 7.0 kN/m)

L
256 P2 {(1+u)

3 = 0.042440

5
T E1Ajf
and from (23) we get
w

2 = 0.01840, w_= 0.110 m.
f o]
Now, for computing the displacements parameter of the secondary load we have

F1 = f + Wi, 3= 611 cm.

The coefficients of the formula (36)
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LELQ1+y) _ 0.10310 ; 2(p0+ps)a (1+y)
£ A 52 A 3 = 0.01252
177 ™ E1A1f

16ptah(1+v)

PE A f2
T

= 0.001794

and the unknown ;ﬁ.= 0.0155 ; w, = 0.095% m.

Now we may compute by formulas (38) - (40):
the displacements
0.110 - 0.7077 = 0.095 + 1.0 = 0-017 m by x = -0.5a
0.110 - 1.0 = 0.110 m by x = 0,
0172 m by x = 0.5a

i

W

w
w=20.110 « 0.7071 + 0.095 +« 1.0
the inner force horizontal component

H = 367 kN ;
the bending moments
4600 - 0.01840 + 0.7071 - 18760 - 0.0155 + 1.0 = -231 kNm by x = -0.5a

M = =
M = 460D - 0.01840 - 1.0 = 85 kNm by x = 0,

M = 4600 - 0.01840 - 0.7071 + 18760 - 0.0155 = 351 kNm by x = +0.5a.
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