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SUMMARY: The purpese of this paper is two-fold. First the relationship
between the superposition-equation method from elementary structural analysis and
the matrix force method and force and displacement methods are given. Secondly a
mechanical interpretation of an algorithm producing sparse and banded self-
stresses is given, It is explained how the primary structure is found by this
method and in which manner the numbering affects the effectiveness of the
algorithm. The load cluster method is used for explanatory purpose. The method is
also connected with the choice of minimal substructures.

INTRODUCT ION

The superposition-equation method or Maxwell's method is well-known from
elementary structural analysis /4/, /13/. This method is widely used for the
analysis of truss and frame structures with a low degree of indeterminacy. In
matrix structural analysis the equivalent of the superposition-equation method s
the force method,

With the propagation of digital computers matrix methods have become more and
more important. In structural analysis there are two competitors, the displace-
ment - and the force method. The methods are dusl and are based on three
elementary equations. In comparison between the displacement - and the force
method the latter one has three great disadvantages:

(1) the necessary choice of the primary structure:

(2) the great amount of operations necessary for the analysis of the primary
structure under only the applied forces;

(3) the great amount of operations necessary for the analysis of the primary
structure under only the redundant forces.

During the 1960s the first algorithms were invented for an automatic choice of
the primary structure /1/, /2/. In connection with these algorithms there exists
one additional disadvantage: the stresses within the primary structure due only
to the redundant forces range over the whole structure and result in a completely

dense overall flexibility matrix. This is a great drawback of the method, as
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the overall stiffness matrix of the displacement method is banded or has a
skyline form. This problem was recognized pretty early /3/ but there was no
solution for a couple of years.

In elementary structural analysis the load cluster method is used for the
reduction of numerical manipulations in connection with the superposition-
equation method /4/. The primary structure under only the redundants is manipu-
lated by combining different redundant restraints into a new cluster redundant
restraint. This method can be applied with a computer.

In the following a review of the elementary equations of the force method will
be given and its relation to the displacement method will be shown.

Secondly an algorithm for the numerical choice of the primary system will be
presented. The analysis of the primary system under the redundant forces will be
explained by use of the Gauss LU-factorization and a turn-back LU-factorization
scheme first presented by Topcu /11/. This will be followed by a mechanical
interpretation of both algorithms. Examples will illustrate the improvement of

the turn-back LU-factorization scheme.

ELEMENTARY EQUATIONS OF THE LINEAR ELASTIC ANALYSIS

The basic equations of the linear elastic analysis with small displacements
are: equilibrium, material Taw and compatibility.
The equilibrium conditions are

aT F=R. (1)

Here the internal linearly independent forces F € IR™ are transformed by the
equilibrium matrix ET € R™™ into the nodal loads R € IR".

A structure is statically determinate, if n = m; a structure is indeterminate
to the p-th degree, if p =m - n > 0; a structure is a mechanism, if n < m. In
the following we examine only redundant structures.

The equilibrium matrix of the structure is built up from element equilibrium
matrices as presented e.g. in /5/ and /6/. It is presumed that ET has full row
rank, which is always guaranteed by an accurate idealization of a redundant or
statically determinate structure,

The material law is
EE =5, (2)

Here the internal linearly independent forces F are transformed by the block

mxm

diagonal flexibility matrix f € IR into the element deformations v € R™
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and

F =B_X.
—X —_ —

The forces Eo are the internal forces in the primary structure due only to the
applied loads 5.(5 = 0). The forces Ex are the internal forces in the primary
structure due only to the redundant forces (E.E 2). The components of Ex
corresponding to X are unit forces.

Mathematically Eo € R™" is the Moore-Penrose generalized inverse of iT,

which means that

T T
Bya.a B =1 (7)
with | € IR™" a5 the identity matrix.Furthermore EX € iRmxo is the kernel of ET!
which means that

BTa_aTB=g (8)

X — = = =x

with g_EIRnxp as zero matrix. X are the redundant forces.

In elementary structural analysis the primary structure is selected by the
analyst. Theoretically there exists an infinite number of different primary
structures. Having only discretized structures in mind, there exists only a finite
number of different linearly independent redundant force vectors. The matrices
B and B are therefore not definite.

—0 —X
By using equation (2) and replacing F by eguation (6) as solution of (1) and

replacing v by equation (4) one obtains

fB,R+fB X=ar. (9)

Premultiplying this equation by §l the basic equation is found by use of eguation

(8):

Bl £8 R+B X =0 (10)
X ——0 = X -= -
or
X =38, (11)
with
=B P,
- =X — —=x
T
G = B LB B

The mechanical interpretation of this is the following:
- Firstly equation (10) means that the work done by the redundant forces is equal

to zero (Bernoulli's principle of virtual work).
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a numerical procedure for finding the primary structure will be given and second-
ly the analysis of the primary structure under the redundant forces will be

explained.

EVALUATION OF THE PRIMARY STRUCTURE

By equation (1) for each degree of freedom at each node equilibrium is ful-
filled. For a statically determinate structurée ET is a square matrix. By factori-
zation of this square matrix within a single step the linearly independent
internal forces can be analysed. Because of the unsymmetric form of ET pivoting
is necessary during farctorization, ensuring that the element of the main diagonal
of the matrix remains always non-zero. For a redundant structure such a factori-
zation is as well possible. As there are more unknowns than equations, it is
necessary to add further equations., In case no non-zero diagonal element is found
by pivoting the corresponding internal force Fi is chosen as redundant force, This

is done by adding the equation

During the whole factorization of the matrix E_T additional p equations are found

. A
and one ends up with a new square and regular matrix a .
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Figure 1. Two dimensional frame.
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Figure 2. Internal forces due to X7=1; X,=0; =7,

The main problem of the load cluster method, the computation of the different
coefficients can be stated as-:

find a self equilibrated substructure using only previous redundant restraints

and leaving the reactions of the primary structure as far as possible zero.
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Figure 4. B, matrices due to single loads (a) and load clusters (b) as

Figure 5.

redundant forces.
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Physical extension within the primary structure due to single

loads (a) and load clusters (b) as redundant forces.
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The plane frame of Figure 7 ‘has two different numberings. As redundant forces

?, Fg, F?, Fg, Fg, F}s and F;s are chosen. (The superscribt identifies
the element and the subscribt the force component.) The primary structures for

the forces F

Fg and Fg with both the numberings are examined. The results found by the turn-
back LU-factorization are given in Figure 8. Not only different self-stresses
but also different physical extensions of these self-stresses are found.

The algorithm always starts with the computation of the first self-stress. For
higher self-stresses the algorithm tries to equilibrate the applied redundant
force by choosing adequate values of the already examined redundant forces. With

both numberings the redundant force F? is equilibrated by Fg and the redundant

(a)
=
(b)
—— —_—
1 F2§=1 F3 =1 -1
Figure 8. Influence of numbering on physical extension of self-stresses.

force Fg is equilibrated by F;. Al though Fg equilibrating by Fg with the second

numbering causes a smaller physical extension of the self-stress, this is not
possible as Fg is not known to the algorithm up to that point.

The example shows the necessity of a numbering with smallest bandwidth of the
equilibrium matrix ET: As only previously computed redundant forces can be used
within a cluster the minimal bandwidth is necessary to obtain self-stresses with
minimal physical extensions and thus a banded matrix E*. This method is not only
valid for a frame but also for general structures idealized by finite elements,
as the following truss example will show. In Figure 9 the structure and its element

and node numbering are given. Furthermore the redundant forces found by LU decom-
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Figure 10. Physical extension within the primary structure due to single
loads as redundant forces.

As an example we look at the self-stress belonging to X12 = 1. Whereas with the
conventional procedure this self-stress spreads over the whole structure, with the

load cluster only elements 11, 46, 47 and 48 are affected. The load cluster is
formed by

=1, X10 =1 and X6 =1.

The turn back LU procedure can be applied as mentioned above to any finite
element structure. Larger examples and examples of plane stress and plate bending
structures are given in /10/. The mechanical interpretation is found by analogy

but is not as obvious as with frame and truss structures.
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CONCLUS10ONS

Using Gauss-Jordan elimination or Gauss LU-decomposition for the automatic
analysis of the primary structure by the force method always leads to self-stresses
that affect the whole structure in general. By the turn back LU-factorization
only small parts of the structure are affected. This is an improvement of the
matrix force method.

The method of load clusters is used for mechanical interpretation of the turn
back LU-factorization. In /6/ an easy to understand test procedure for the turn

back LU-factorization written in FORTRAN IV with explanations is given.
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