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SUMMARY: The finite element method is used in connection with a direct
search algorithm to optimize general structures resisting earthquakes. By
mathematical approximation the eigenproblem size is reduced and by using
only the first mode a design concept is presented. Examples show the
efficiency of the direct search algorithm.

INTRODUCTION

This paper shows how by using a finite element idealization an aoptimal
design for earthquake loading can be found. The advantage of the finite
element idealization with its different element types is that not only
special types of structures like shear buildings can be optimized efficiently.

Design variables x are the element thicknesses of plate elements and the
cross-section areas of bars and beams. With beam elements it is assumed that
inertia properties and section moduli can be depicted as nonlinear functions
of the cross-section area x. Objective f(x) is the cost of ths structure,
which has to be a minimum under given constraints G(x) > 0. The cost is
assumed to depend linearly or nonlinearly only on ths design variables and
not on any mechanical values like stresses and deformations.

Restrictiocns on the design variables, called "constructional constraints”
ard on nodal deformations and element stresses, called "structural con-
straints” result in a highly nonlinear constrained minimization problem. By
the constructional constraints the engineer has a tool to give some useful
criterion to the algorithm by contributing his dssign experience. The struc-
tural constraints define upper and lower bounds for stresses and deformations
as required by the design codes. By equality constraints the design vari-
ables become independent of the finite element idealization, e.g. different
elements have the same design variable. Considering this in advance the
size of the otpimization problem is reduced.

Especially the structural constraints are highly nonlinear in the design
variables. Gradients with respect to the design variables can usually be
obtained only by approximation. The sophisticated methods of mathematical

programming like guasi Newton and conjugate gradient method are therefore
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not appropriate.

Direct search algorithms, which do not require the computation of gradi-
ents, were investigated for several mathematical test examples by Schwefel
/1/. One of the most reliable algorithms presented there, is used here to

solve the described optimization problem.

FINITE ELEMENT FORMULATION

The equilibrium cendition of a structure under earthquake loading in the

displacement method with matrix notation is

[K{x] + K )]r[t} * M T(t) = -M R Fa[ti . %]

[N ._g il —_— = ki

The elastic stiffriess matrix K(x) depends on the design variabies x. The

geometric stiffness matrix Eg[ig) is supposed to depend only on the static
loading of the structure. A lumped mass matrix M is assumed. All matrices
are of dimension n by n. The time dependent nodal deformations and acceler-

ations are r(t) and T(t).

EFarthquakes generate by the horizontal component of the ground accelar-
ation © [ ) mainly lateral forces represented by the time independent
1oadvaoLor R (usually a (0,1) vector) /2/.

By solving the eigenproblem

[K(x) + K (EDIg - Mo Q-0 (2)
one obtains the modal matrix ¢ and the diagonal spectral matr¢x a4 = [w?].
Based on the orthonormality requirement of the eigenvectors ¢ modal a;aly—
sis is performed.

The response spectrum Sa represents a smoothed maximum value function of
response acceleration of a single degree of freedom system with variable
natural period Ti' In Figure 1(a) response spectrum for steel with 5 %~
critical damping and 0,1 g maximal ground acceleration (Mercally intensity
VII) is shown /3/. Using the response spectrum S, and the time independent

2
Sglm/as] T, = 2n/w,

0,36 T2/ T;

0.5 T; [s]

Fig. 1. Response spectrum for steel.



loadvector R an upper bound of the normal coordinate qi of i'th mode is

found:

a; = — T MRS W) L S (3)
o .
1

S| i

Therewith nodal deformations il and element stresses él are
é = q.o i=1,...,n (4)

1

o' = [BY(x) u'] J= 1 eea.m (5)

Q
|

with the blockdiagonal stress matrix [EJ(E)J and the =zlement deformations

i 5 ]
u ; the number of finite elemaents 1is m.

ft should be noted that often one stress constraint per element is
sufficient, because by modal analysis, as performed here, only the value of
qi is specified.

By rms method /2/, /4/ bounds on deformations and stresses caused by all

modes are computed:

/5

; -i,2 .

., = Z ;

rj .z [PJ] j € Ie (B)

/0 =12
o, =/ I (0] J B Hyaweydy (7)
] T

i
The number of stress control points is 1. The set of indices of controlled
deformations 1is Ie'

Thus all constraints can be formulated as inequality constraints of the

form

G(x) 20 . (8)

APPROXIMATIONS

The main problem in the computations described above is the sclution of
the eigenproblem. Morecver, as in optimization the solution has to be
obtained many times.

Earthquake loading is, as mentioned above, a lateral loading. The degrees
of freedom of a structure can therefore be parted intoc primary degrees
(horizontal) and secondary degrees (vertical, rotations). Decomposing the
eigenproblem according to this and using the assumption that M is a lumped

mass matrix one obtains /5/



Substituting in this equation the secondary part QZ by the primary one 21
(10)

and using series expansion for the inverse with the first gigenvalue, the

eigenproblem is reduced to the primary degrees of freedom:

g = J g
(K, - - M) = 0 (11)
Wty By g = O P
wit h
K, = K - KL kI kL , (12)
A 221 =12 =22 =21 "
Byoo= Moo+ Koo K30 mo kDD &
21 7 2 T Rqp Rop U Bpo By
and

“? 2 3/77 A 3 3

= - (Ko,+w., K. f Koe ® " (13)
92 [mZZT&i Las tly —42J521 iy e EE
Herewith problem size can be reduced betwsen 50 % and 66 %. This seems to

be more advantagous than the usual assumption that a structure bLehaves like
a shear building.

The first eigenvalue is considered only. The sufficiency of this approach
is problem dependent and must be checked. Fquations (B) and (7) are neces-
sarily not relevant in this case.

Other possibilities to reduce ihe problem size are
- utilizing symmetry of a structurs having in mind that lateral loading is

antimetric;
- neglecting axial deformations of beam elements:
- coupling of degrees of freedom:

- neglecting the mass moment of inertia.

OPTIMIZATION ALGORITHM

The cptimization problem is

min {f(x)} x € RY, f(x) : RY » R

subject to (14)
G{x) > 0 G(x) : R* + RE.
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The number of design variables is o and the total number of constraints is B.
The present algorithm is originated from Rechenberg /6/. It simulates by
normal distributed processes an evolution. The change of the design vari-
ables is interpreted as s mutation and the decision toc use a new vector or
not is said to correspond to a selection.
Starting point is supposed to be a feasible design vector 50. Iteration
(mutétion) is counted by v. With the normal distributed random vector Z @

new design can be found:

Y T & *E [15)

(v, if G(y") > 0 a FlyY) < £(x")
X = o - {(16)
L2 otherwise.
The normal distributed random numbers Ev are calculated from uniformly
distributed random numbers z in the intervall (0,1). (A routine computing
uniform random numbers belongs to the standard library of any computer.)

A transformation with the stepwidths 5 (i = 1,.westl) rPEsults in /7/:

~V / v, -V
Zz. = V-2 1ln z. sin (27mz.
i i+

1] i: uneven

R A |
3V - /{2 In 27 CoS (ZWZ?J i: even
i i-1 i
2V = s, 3V . (17)
i i “i

Stepwidth is increased or diminished by up to 15 %, if one success does not
occur in average within five iterations. Iteration stops, if accuracy
criteria on objective and stepwidth are active or the computing time reaches
a given limit. The algorithm solves the constrained problem by accepting
only feasible design vectors. This is identical with using an infinite
outer penalty function. As the problem is usually not convex only a local
minimum can be found in general. This has to be taken into account with
applications of the algorithm.

In reference /1/ a FORTRAN code of the algorithm is given. Numerical
investigations show that this relatively simple method is characterized by
an extreme reliability, which is very important for engineering problems /1/.
Rechenberg /6/ proved linear convergence with special problems. In contrary
to Schwefel the author changed the algorithm in the respect that instead of
controlling the feasibility of a new design the decrease of the objective is
controlled first. This results in a 50 % saving of computing time for the
following application (see eq. (6)) /8/.
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APPLICATION
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mode by von Mises vector

condensation;
- exact condensation for zero mess moment af inertia and computation of all
eigenvalues and modes by Householder reduction;
- condensstion as described in "Approximations” and computation uf only the
first eigenvaiue and mode by ven Mises veclor iteration.
Applications with up to 15 variables and 90 constraints showed that the
mzthod is very reascnable for earthquake design. In all examples & colution
was found. Teo verify the correctrnesss of a solution it is necessary to begin
with at least two different start vectors (see section “Optimazation
algorithm”). Compariscns rasulted in maximal 3.5 % different objective
function values.
EXAMPLES
A plane frame of a schaool building (Fig. 2), which was optimal for statie
loading, is optimized for the d spectrum of Figure 1,
The elements have I-cross-sections.
The inertia properties J, and section
L
maoduli Zi are appruximated as functions
15 & s el = 24 of the cross-section area x.:
B & &= ?
G) 17 G2 18 G1si D 204 ¥ 1
L Ny
3 % y
® & @] o .
Fip = BB g
s } ._ i
i
and
8 (5 ; 158
® Zj = 1.58 x g
2, _ ]
(19 cl
e 7777 5?7 The material is mild steel St37 with
1 2
2m  2m a modulus of elasticity of
-Im s3I m -3 m B el 5 5 .
2.1107 kN/m” and a yield stress of
5 z :
2.4-107 kN/m”. Table 1 shows the

Fig. 2. Plane three
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Table 1. Node-mass assignment of three

storey frame.

node | mass lmass moment
of inertia
[t] [t m?]
4,10 9.9 0.99
5,6,11,12113.8 1.38
713 19.7 1.97
814 122 1.22
9,15 91 0.91
16 1.85 0195
17,18 3.84 0.384
19 B.25 0.325
20 2.60 0.260
21 1.30 0.130

The horizontal deformation of node 16 must not exceed 0.05 m (r37 % B.05},
Within all elements normal stress is restricted to the yield stress as
required by the design code /4/. From construction it was necessary to have
the columns from bottom to top and the girders in each storey of the same
size. Table 2 shows the assignment of elements and design variables and the

minimal values of design variables as a result of the static loading.

Table 2. Element-design variable assignment.

design variable element fower bound
number of x; [m2]

1 1.2,3,4.5 0.0207

2 6.7.8.910 00208

3 NA2.13.%.15 0.0069

A 16,17.18 0.0130

5 19,20.21, 00158

6 22,2324 00094

The first eigensolver routine of section "Application” was used for cal-
culating stresses -and deformations. A computation with the minimal cross-
sections causes an overstressing of up to 72 %, but feasible deformations.
By raising the design variables with the ratios of overstressing a first
start vector is found (Table 3). As stepwidths S each component is set to
0.01 m2 at the beginning. To improve the results a second start vector with

0.023 m? for each design variable is used.
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Table 3. Start and finasl vectors o+
design variabie | final design I final design I
i
T - 2
nurmber Xi {m] xi [m?]
1 0.0219 G.0218
‘ 00208 (.0208
3 i 00068 0.0069
4 . 3.0158 Q0148
g 50258 00291
6 G.0155 0.0122
“lgure 3 chows the iterstion history for beoth start vestops. The
st the structure is represerted by the percentage of yield
stress reached in emach element. For both start vettors and the related
volume
{ m 21
1.7 4
¢
¥
*
‘t.
‘.‘ 1 "
1gd . ostartvector I
""\_.
o (5,15649)
1.5] }
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01 B 1C 5 20 25 36 iterations
Fig. 3. Iteration history of three storey frame
final designs the strengthening is depicted in Figpure 4.
g B
ne cvifference between bnth solutions is 1.4 %. The final designs repre-
sent noth local minima, which are caused by the activation of at least two
constraints. The mechanical hehaviour of both designs is different: whereas
the column in the middle of both designs is relatively strong, only in the
final design II the outer columns are according to the structure of different
size. The symmetry of design I is contradictory to the unsymmetric structure.
As & second example a six storey plane freme (Fig. 5) is optimized for
the design spectrum of Figure 1.
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Table 4. Assignment of elements and desion variables,

design vario- -
bie number etlement lower bound [start vectorIistart vectorII
of xj[m?] m 2] (m?]
1 12 8015 008 006
2 3.4 0.025 Bo5H 0.06
3 56 0.015 0.05 006
IA 7.8 0015 005 006
5 910 0020 838)5 006
& 112 0015 005 006
7 1314 0015 005 0.06
8 15,16 0.020 005 006
9 17.18 0.01 0.05 006
10 19,20 0020 005 006
i 222 0.020 g5 006
17 2324 0020 Ba% 006
13 2526 0.020 : 005 006
ik 272 0020 005 0.06
& 2830 0.020 005 G0&

Ficure B shows the -1 i histar
lgure b shows the iteration history for both start vectors. The number

. . B .
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start with a feasible design as close as possible to some constraints. With
both start vectors the deformation constraint is active at the local minima.
The difference of the objective function between the two final designs 1is

2.5 %. Improvement is 26 % and 37 % respectively.

o\

The final stress distribution and cross-section areas can be sean in Figure
7. Stresses are again percentages of yield stress, and cross-séction areas are
; : -4 2 . . .
of dimension 10 m™; in brackets are the minimal allowahble cross-section

areas for comparison. From Figure 7 it is evident that by the structure
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Fig. 7. Stresses and cross-section areas in final designs.

a special mode of action is emphasized and both final designs produce a

different layout of it, although the volume of both is nearly the same.
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CONCLUSIONS

This paper describes an applicatior of a direct search algorithm to

rarthquake resistant design. The displacement method and a finite element
model are applied. Results of two examples illustrate the procedure.
NOTATIGN

v} number of design variables

B number of constraints

fix) objective function

ES vector of inner axial forces caused bz static loading

g acceleration due to gravity (8.81 m/s%)

G(x) vector of constraints

Ji[xi] moment of inertia

K(x) elastic stiffness matrix

Eg[EqJ geometric stiffness matrix

1 number of stress control points

m number of elements

M lumped mass matrix

n number of degrees of freedom

W, natural freguency of i'th mode

2 spectral matrix ‘

¢ modal matrix, matrix of eigenvectors

a; normal coordinate

rltd, L] vectors of nodal deformations and accelerations

fa(t] horizontal component of ground acceleration during an earthquake
S stepwidth of variable X

Saiwi] response spectrum

g stress vector

t time

Ti natural period

X vector of design variables

ii,ii,zi uniformly normel distributed, weighted random numbers
Zi(xi] section modulus

Superscript T transpcse of a matrix
p
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