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SUMMARY: For a rotor, with anisotropic bearings, the response to unbalances
can be characterized with elliptical rotor point paths. The magnitude and
phase angle of displacements are varying periodically in time. However, the
elliptical rotor motion can be considered as the sum of two circular
cynchronous motions, one in the spin direction and the other in the opposite
direction. By measuring the magnitude and phase of the displacemant in two
perpendicular directions those circular motion components are obtained. The
phencmena of backward precessional critical speed is also treated in this
paper. An example of practical application is outlined.

INTRODUCTION

Usually, the vibrations of rotating machinery, e.g. turbiness, separators,
machine tools /1/, are due to unbalances. Those vibrations are especially
crucial when passing through the critical speed of the machinery. Therefore,
during the last decades a number of computer programs for predicting
unbalance reponse of rotors have been developed /2/. Rather sophisticated
mathematical models have been used and a reasonable agreement with reality is
generally obtained.

However, these sophisticated models are hardly intelligble for the human
mind. By studying very elementary models qualitative understanding of many
phenomera is gained. Furthermore in the area of rotor dynamics, many results
obtained for single-degree-of-freedom systems, can be applied on multi-
degree-of-freedom systems by means of transformation to modal parameters /3/.
Tondl /4, 5, 6/ has studied single-degree-of-freedom systems in order to
study the stability of rotors.

The eigenfrequencies of a rotor are dependent on the speed of revolution.
This is due to the gyral effects. When the spin speed of the rotor coincides
with one of the eigenfrequencies a critical speed is obtained. The calcu-

lation of critical speeds is of fundamental importance in rotor dynamics.
However, also the case when the ratio spin speed/eigenfrequency is an integer
may be of some interest. Early investigations of these "second-order
critical speeds” have been performed by Fernlund /7/. When the ratio is

equal to -1 the speed is denoted critical speed of backward precession /8/.
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In this paper it is shown that those critical speeds may be excited due to

unbalances when the bearings are anisotropic. A similar example was sarlier
studied by Gasch & Pflitzner /9/.

MATHEMATICAL MODEL

In order to readily understand the effects, analysed in this paper, a very

simple mathematical model is studied:

= ! A gyro is mounted on a rigid, massless shaft
| and symmetrically situated between two identical
_+“,n anisotropic bearings. By means of elementary gyro

dynamics the equations of mction are readily

] derived /9, pp. 93-98/, after assuming small

deflections, i.e. linear theory is valid, identical

bearings without clearances, the principal axes of
bearing stiffness and damping coincide with

coordinate axes, viscous damping:
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Figure 1, Geometry of
rotor-bearing system.
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where

€y Cy - bearing damping constants in x and y direction respecstively,

D couple unbalance,

JD diametral moment of inertia,

J polar moment of inertia,

kx, ky bearing stiffness caonstants in x and y direction respectively,

21 shaft length,

m rotor mass,

me static unbalance,

u ., Uy radial displacements,

Ox, By rotations,

f spin (speed) angular velocity.



The definitions, accerding to ISO0-standard, of different unbalances, are

given by Schneider /10/ and illustrated in figure 2.
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Figure 2. (a) Static unbalance me_ = m_r, unbalance mass, r radial

m
distance to unbalance m3ss. E(b] Eouple unbalance D = Zm_rh,

r radial distance to unbalance masses, h axial distance fo
unbalance masses.

Due to symmetry the equations constitute two independent systems. We will
confine our analysis to equations (3) and (4) where the gyral effects are
included. By means of a simple change of notation the results can also be

applied on the radial displacement. By introducing the notations

C—) = Gy - lex »
@* = @y + ie}( i
c = L%c +c) ,

Ak

i
—

where i is the imaginary unit a single complex equaticon is abtained:

318 - 13,8 + ob + Acb* + ko + Ako* - DR%exp (iGt) . (5)

By means of the trial solution

0 = 8, exp(ift) + B_exp(-iNt)

where é+ and 6_ are complex constants, by employing the identities
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0% = O%exp(-iQt) + O*exp(ifRt) ,
0% = -iQB*exp(-iQt) + iRG*exp(ift)

and by identification of the coefficients of exp(iQt) and exp(-iRt) two

complex algebraic equations are obtained

(-3p0°+3 0%+i0e+k)B, + (insc+ak)dt = pa? , (6)
) A 2 2 g A
[-1QAE+AKJOt + [—JDQ -Jpﬂ -iflc+k)e_ = 0 . (7]
ISOTROPIC CASE
In the isotropic case, i.e. Ac = Ak = 0, 6_ vanishes and equation (6) is
reduced to
(-JDQZ+Jp92+iﬂc+klé+ = o . (8)

The backward precessional rotation component vanishes and the rotor points

describe circular orbits,

Since ©, is a complex canstant it can be defined by magnitude and constant

phase angle,

~ _ ~ -i(p
0, = |o,le .
where ¢ is phase angle between excitation and response.

For

the unbalance moment DQZ is merely balanced by the moments dus to viscous
forces. This speed is called critical speed of forward precession.

For @_, é+ is purely imaginary and the phase angle between excitation and
response is w/2. By studying the phase angle the critical speed can be
located after interpolation.

For an isotropic, undamped system with a perfectly balanced rotor equation
(5) is reduced to

350 - iQJpé + ko =0 . (9)

By making a trial
34



& = 6eiwt

a characteristic equation of second degree is obtained

+ wQ J o+ k =0,

2
w JD B

(10

For each @ there are two natural angular freguencies

] /J .
£ 8§ & f -2 gy* 4

4
2

k_
D D I5

(11

Due to the gyroscopic effect the naturalhangular frequenciss are dependent

on the spin speed. If w = §, then

{1 is denoted as critical speed of forward precession.

w =g
forward whirl

R, spin speed Q

whirl speed w

backward whirl

Spin-whirl diagram for J_ < J

Figure 3.
precession, {_ critical

pspeeQ,

{12
The case Q@ = -w i.

(13

is also of some intsrest and

_ is denoted as critical

)

)

)

e.

)

speed of backward precessian.

The easiest way to
understand the situation is
by studying the spin-whirl

diagram.

0, critical speed of forward
of backward precessiaon, W,

eigenfrequency at zero spin speed.
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ANISOTROPIC CASE

In the anisotropic case (Ak # 0 or Ac # 0) there is a coupling between
equations (6) and (7). Therefore B # 0 and the points of the rotor shaft
describe elliptical orbits

+ é_ E-lgt 5 (14)

it
e

The deflection/moment ratio ©' is obtained after division @ by the
unbalance moment Dﬂzexp[iﬂt), that is

o' = 0/DR%xp(iat) = &, + & (15)

The argument of ©' is time-dependent when 6_ # 0. DOne phase angle is
therefore not sufficient to describe the motion of the rotor. Balda /11/
measﬁred the phase angle in two perpendicular directions. In this paper a,
to the author's knowledge, novel method to define the phase angles of an
anisotropic rotor system is proposed.

From equation (7) we abtain

-(-iQ8c+Ak) 0%

o = ) . (1B)
T R/e « 3 H% = Tos = K
D p

The backward precessiocnal rotational component is thus indirectly ex01ted by

the moment
-(-iRAc+Ak)O*

which is caused by anisotropy of the rotor bearing system.

For @ = @_ the real part of the denominator vanishes, and

iQ Ac 0% .
an[(1+ T] T] = > .

0
For a lightly damped system i.e. Q_Ac/Ak << 1 one can claim that Ehe argument
of ét/@_ is equal to -m/2 at the critical speed of backward precessian.

Une way to describe the angular deflection of a rotor in anisotropic
bearings is

Bx = @xccos at + stain aQt - (17)

@y = Byccos ot + Gyssin 0t . (18)

Unfortunately the meaning of the coefficients @xc exs eyc and By is not
readily understood. However, by means of complex algebra one can readily

rewrite expressions (17) and (18) as (14 Furthermore expression (14) is
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rewritten as

i(Qt-v,) -i(Qt-¢_ ) -ig iQt -iAp -iQt
0 =0, e + 0 e = g (6. e + 0 e e ). (19)

The rotation is thus characterized with four parameters:
= |8,] amplitude of forward precessional rotation component,

= |8_| amplitude of backward precessional rotation componant,

@, = phase angle between unbalance moment and forward precessional rotation
components,
b = @_ - ¢, phase angle between forward and backward rotational components.
For a stationary motion the parameters ©,, ©_, ¢, and @_ are time
independent. For a forward precessional critical speed $, = /2 and for a
backward precessional critical speed Ay = u/2.

EXAMPLE OF PRACTICAL APPLICATIOCN

Balda /11/ presented a paper concerning rotor balancing. The deflections
and phase angles were measured in two perpendicular directions. ODue to
anisotropy in the rotor-bearing system different results were obtained in
x- and y-direction respectively.

In this paper it is shown how one can use thoss figures to calculate phase
and amplitude of backward and forward rotation components.

The previous results, derived for an angular degree of freedcm, can be
readily applied on the radial degrees of freedom, by means of simple change
of notation.

We will calculate the complex coefficients ;+, 9_ defining the dynamic
deflectiaon,

r o= 9+ piB r_ g WHE (20)

The deflections (PI and PII) and phase angles [wI and wII] in the x- and
y-directions have been measuread.

When the rotor is deflected in the x-directicn the angle between force
and~displacement is measured to @1 0t is therefors esqual to o * 2mn (n is
an arbitrary integer) and the following eguation is cbtained
%+ elwI + F_ e 1 = ry o (21)
When the rotor is deflected in the y-direction &t = opp ¢ m/2 + 2mn and the
following equation is obtained after division by i

Yorg “iorr
r, e - r_ e = Lyp - (22)
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Figure 4. Oeflection of rotor during cone revolution,
®1 phase angle when rotor deflectsd in
x-direction, @17 phase angle when rotor
deflected in y-direction.

By means of elementary algebra expressions for §+ and ?P are readily
derived from (21) and (22):

Ay “ieg .
. r. e + e -ig
B, = = -, e, (23)
2cos(m1~wIIJ = o®
imII imI
R r; e - Ty e +ig_
r_ = =r_e (24)
ZCDS[wI'wII]
When r; = rpp and ®; = @77 then ?_ = 0, thus the backward rotation component

is non-existant.
By means of formula (23) and (24) one can calculate amplitude and phase
of forward and backward rotational components respectively.

CONCLUSIONS

By studying a very simple mathematical model one can understand the
influence of anisotropy of bearings on a rotor-bearing system. It was 8.g.
shown, that critical speeds of backward precession may be excited due to
unbalances, when the bearings have anisotropic stiffness or damping
properties. By means of simple change of notation the mathematical procedure

described in this paper can be réadily extended to a multi-degree-of-freedom
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system. Eguation (5) is then generalized to

[MI7 + [AMIT* - S9[DIF + [C17 + [ACIF* + [KIE + [AK]R* -

= F, exp(iQt) + F_ exp(-iQt) , ! (25)

=

where

[C], [AC] damping matrices,
[K], [AK] stiffness matrices,
[M], [AM] mass matrices,

complex displacement vector,

i F force vectors.
" “

The coefficient matrices [AC], [AK] and [AM] are due to non-symmetrical

T o

damping, stiffness and mass properties of bearings, frame or frame feet.
Anisotropic properties of the rotor are not included in eqguation (25)., In
that case time-dependent coefficient matrices are obtained /12/, equation

(25) can be solved by means of the trial
r = r_expliQt) + ©_ exp(-int) . : (26)

If the exciting forces are due to unbalances, ﬁ_ = 0. If §+ = & Fv, an
exciting force with constant direction in a non-rotating coordinate system
is described. In the latter case, one can realize that critical speeds of
backward prscession will be excited even in the entirely isotropic case, i.e.

[AC] = [AK] = [aM] = [0].
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