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SUMMARY: In this paper the eigenvalue equation for a rotating hinged-hinged
beam has been derived. The effects of gyration, shear deflection and rotary
inertia, which are essential for thick beams, have been considered. When
the cross-coupling between these effects is taken into account the number of
eigenfrequencies is doubled.

INTRODUCTION

The one-dimensional beam theory is a simplification of the general three-
dimensional elasticity theory. In the classical Euler-Bernoulli beam theory
only the deflection due to bending is considered. When this theory is used
for dynamical calculations, the eigenfreguencies will generally be over-
estimated.

A better approximation is obtained when the deflection due to shear defor-
mation and rotary inertia also are considered. This improved beam-theory is
called Timoshenko-theory.

A number of investigations, where the Timoshenko beam theory is used for
developing finite element programs, have been published /1-5/.

Dimentberg /6/ has derived analytically the eigenvalue equation for a
rotating hinged-hinged beam. The rotary inertia and shear deflection were
considered.

By studying the analytical solution, after introduction of some non-dimen-
sional parameters, one can better understand the influence of shear deflectiaon

rotary inertia and the cross-coupling of these phenomena.

EQUATIONS OF MOTION FOR A BEAM WITH ROTARY INERTIA

Dimentberg /6, pp. 92/ has given the following equations of motion for a

Circular beam, taking the rotary inertia into account:
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where
= area [mz],
= Young's modulus [N/mz],
I = maoment of inertia of the cross-section area about an axis normal to
the plane of bending [m4},
5 = coordinate along the axis [m],
t = time [s],
Tx = shearing force [N],
U s uy = radial deFlecgiQns in a non-rotating coordinate system [m],
o = density [kg/m"1,
Q = speed of revolutiaon [rad/s].

Equations (1) and (2) concern the translational and rotational motion

respectively of an infinitesimally thin shaft segment (Figure 1).

Hy(5+55)

T,(s+06s)

Figure 1. An infinitesimal shaft segment.
For explanation of the terms appearing in the equations one sees that for

the segment

resultant force = Tx(s + 8s) - TXfS],
Bzu
acceleration = 2x
at
mass = pA 8s,
resultant moment = [Tx(s + §g) - Tx(s]] §s/2 + M”(s + 8s) - 1M (s),
J F: 4
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angular acceleration = 3—7 —,

diametral mass moment
of inertia = pl §s,

polar mass moment

of inertia = 2pl §&s,
moment due to gyral 3 du
actian = 2pl @ 7 [-;g].

From the elementary beam theory it is known that

M (s) = EI i
Y

By taking the corresponding equations in the y-direction, eliminating

the shearing forces and introducing the complex guantity

one obtains

EI 27V - pI(3" - 25 92") + oA % = 0, (4)

where 2 is the time derivative and z' the length derivative.

For a hinged-hinged beam with length L the boundary conditions are:
z{0) = z(L) = O,
z"(0) = z"(L) = 0. (5]
The common trial

z = Z sin E€E EIMt, (6]

in which n refers to the n:th eigenvalue, gives

— 2 2 4 4
tﬂ’”lm—z%ﬂmz-ﬂ“”—o. (7)

AL?

By varying the whirling speed ratioc (R/w) the different critical speeds

are obtained:

/w = 1 critical speeds for forward precession,
2/w = 0 eigenfrequencies non-rotating beam,
Q2/w = -1 critical speeds for backward precession.

By introducing the non-dimensional parameters p and r'

w 2
p oo gt p =B FEL s e AT (8)
w C L2 pA L A
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equation (7) can be written in the following non-dimensional form:

B g2 .20 1
TR E + (mnr?)® (1 7;) -7 - (9)
n
If the non-dimensional radius of gyration 1r' 1is neglected, the eigen-

frequencies of an Euler-Bernoulli beam are obtained /7, pp. 218-221/:

EQUATION OF MOTION FOR A TIMOSHENKO BEAM

In the previous section the eigenvalue equation for a hinged-hinged beam
was derived taking the rotary inertia into account, Now also the deflection

due to shear will be considered. In squation (2) it was assumed that

E

Ju
~—= =0 (10)
ds Y

where @ is the rotation of the cross-section about the y-axis.
If the deflection due to shear is considered the expression (10) is

modified to (Figure 2):

j X

S
Figure 2. Effect of shear.
aux Tx
3s % " %GA - (o)

in which k is the shear coefficient and G the shear modulus.
Equation (2]} is now changed to
Z

a0 2
Y = BT e b '
B~ + T = o1 =3 (8] + 200 35 (0,], o)
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After multiplying (2') with the operator

and making use of (1) and (10') the shearing force is eliminated. By using

the trial function
B nTs 1wt
g = OD Cos —L- e

aone obtains the eigenvalue equation for a hinged-hinged beam:

pI 5 R 4 I . fim.? om i@ BT e @S] 2
EA—E 25:101 E"‘K[T) (1 ZU+GAK [—L’—J]JUJ

EI ,mn,4 _
+E—A- [-L—] = 0. (11)

By using the non-dimensional parameters u and r' defined by equation
(8) and the well-known relationship E = 2(1 + v)G the non-dimensional

equation

2 i y 52 B Q2 201 +v) v, (1 +V)
u - {1 (mnr') E 2 = + -—]} 2 e e

k q
n

E~29:|-[11'-14=o (12)

w n

is obtained.

We have now derived an equation of second degree in w. When the shear
deflection was neglected a first degree equation (9) was obtained, This is
due to the fact that by taking the shear deflection into account an extra
set of degrees of freedom is introduced. The beam can deflect as a sinus

wave in principally two different ways (Figure 3):

a)

Figure 3. (a) Bending mode, (b) shear mode.

For each value of n, two eigenfrequencies are obtained. Normally the
lower frequency corresponds essentially to the bending mode and the higher
to the shear mode.

One can interpret the terms of the eigenvalue equation (12) in the

following way:
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us -
{1 + bending deflection,
(ﬁnr'zl [1 ol %:] rotary inertia,
* (ﬂnr’zl Zil—i—ll } o shear deflection,
M

7
n

201 + v) _ 207 ,mr’,4 ; : -
e E == ) coupling between rotary inertia and shear
. deflection.
When the coupling between rotary inertia and shear deflection is neglected
only one trivial solution for each n is obtained. The other solution

u = 0, corresponds to an infinite eigenvalue.

FINITE ELEMENT APPROACH

A number of papers have been published, concerning finite elements where
the Timoshenko effects (rotary inertia and shear deflection) have been
considered. A review was given by Thomas & Abbas /4/.

A beam element used for the classical Euler-Bernculli theory has four
degrees of freedom in each bending plane. It was proved that the number of
degrees of freedom is doubled when the coupling between rotational inertia
and shear deflection is taken into account. A proper Timoshenko beam element
should therefore have eight degrees of freedom. Such an element has been
developed by Thomas & Abbas /4/.

By neglecting the coupling between rotary inertia and shear deflection,
but still taking both phenomena separately into account, the number of
degrees of freedom is reduced to four. This is indicated by the structure
of equation (12). Such an element has been developed by Egle /2/. In a
recent paper by Nelson /11/ a finite element for a rotating shaft was

presented.

THE SHEAR COEFFICIENT

Different expressions for the shear coefficient k have been published
by several authors /8-10/. Timoshenko /B/ originally proposed k = 2/3 for
a rectangular beam and k = 3/4 for a heam with circular cross section.
These values have been found to be too low. The valus k = 0.85 - 0.30 is
a more realistic estimation. An experimental study has been performed by
Kaneko /12/. A recent paper has been presented by Stephen /13/.
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EXAMPLE 1

Eigenfrequencies and critical speeds have been calculated for a hinged-

hinged beam with the following non-dimensional parameters: v = 0.3, k = 0.85,

r' = 0.008. The following results were obtained:
Eigenfrequency tu/wC
Timoshenko theory
Euler-
Mode Backward Non-rotating Forward Bernoulli
critical beam critical Theory
1 0.9981 0.9887 0.9993 1
2 3.970 3.880 3.990 4
3 8.850 8.898 8.947 9
4 15.684 15.684 15.833 16

The eigenfrequencies are expressed in non-dimensional form m/mc, where

2 w
C:
W

a1l

p is obtained from equation (12).

It is to be noted that for the cases of backward precession and non-
rotating beam, "a second eigenfrequency was obtained for esach n. These
eigenfrequencies correspond to the shear deflection modes. The orders of
magnitude are: non-rotating beam w/wc ~ 900, backward precession w/wc = 500.

When the cross-coupling between rotary inertia and shear deflection was

neglected the following results were obtained:

Eigenfrequency m/wc

Timoshenko theory without cross-coupling

Mode Bac kward Non-rotating Forward
critical beam eritieal
1 0.9981 0.9387 0.9994
2 3.8970 3.980 3.990
3 B.849 8.898 8.948
4 15.532 15.682 15.836
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EXAMPLE 2

The same calculations as in the first example have been carried out for
a ten times thicker beam: v = 0.3, k = 0.85, r' = 0.08. The following

results were obtained from equation (12):

Eigenfrequency Lu/mG
Timoshenko theory
Euler-

Mode Backward Non-rotating Forward Bernoulli

erTtaeal beam critical theory
1 0.8589 0.8957 0.8363 1
2 Z.vB53 2.884 3.124
3 4,726 5.218 5.628
4 §.897 751363 8118 16
The Timoshenko effects now have a considerable effect. Also the cross-

coupling term in equation (11) is not negligible in this case:

Eigenfrequency m/mC

Timoshenko theory without cross-coupling

Mode Backward Non-rotating Forward
critical beam critical

1 0.8504 0.8822 0.9407
2 2.514 2.811 3.244
3 4.269 4.949 6.108
4 5.495 7.084 9.116

It is seen that the eigenfrequencies for non-rotating beam are under-
estimated, but the forward critical speeds are overestimated, when the cross-

coupling term is neglected.

SUMMARY AND CONCLUSIONS

By using beam theorye three -dimensional elastic problem is reduced into
an one-dimensional problem. In the Euler-Bernoulli beam theory only the
displacement due to bending is considered. When this theory is used for
dynamical calculations, too high eigenfrequencies are generally obtained.
The Timoshenko besm theory takes also the shear deflection and rotary inertia

into account. These effects are not neglipgible for thick beams.
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In this paper an analytical solution for a rotating beam given by
Dimentberg is improved by introducing some non-dimensional parameters. By
studying this solution one can understand the influence of shsar deflection,
rotary inertia and the cross-coupling of these effects.

The analyticael solution can also be used for testing computer programs.

NOTATION

A cross-sectional area [m°]

D diameter of beam [m]

E Young's modulus [N/mz]

G shear modulus [N/m%]

I moment of inertia of the cross-sectional ares about a principal

axis normal to the plane of bending [mg]

K shear coefficient

L length of beam [m]

M bending moment [Nm]

r' non-dimensional radius of gyration

s length coordinate [m]

t time [s]

T>< shearing force [N]

U, uy radial deflection [m]

v Poisson ratio

p density [kg/ma]

Oy rotation of cross-section about the y-axis [radl]

Q speed of revolution [rad/s]

w eigenfrequency [rad/s]

W lowest eigenfrequency of a hinged-hinged beam [rad/s]
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