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SUMMARY

The problem has two parts, the first of which concerns determi-
nation of the temperature field, with temperature being expressed in
terms of Fourier series in the circumferential direction. The unknown
coefficients are functions of the radial coordinate, and are derived,
with the help of Bessel functions, from the resultant ordinary diffe-
rential equations. The second part concerns solution of the stresses
attributable to the temperature field obtained. This is achieved by
use of the thermoelastic potential, which is expressed similarly to

the temperature.

([ TEMPERATURE FIELD INDUCED BY THE POINT SOURCE

Let us consider a circular ring with an inner radius of Lo
an outer radius of R and a thickness h. The equation of heat

conduction is [1]
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15 ., 9T i BZT L 1
- 37 rg?) < 302 K T(r,8) = AW(P,O). (1.1)
Here
2 4 28
DY
T(r,0) = temperature in the ring (outside the ring, tempera-
ture is zero),
¢ = coefficient of heat transfer,
A = coefficient of heat conductiaon,
W(r,8) = rate of heat generation per unit volume.

The boundary conditions are

QL
—

— B 0 . (1.2)
or |r = r
@]
r =R
The functiaon T(r,8) must be periodic, with a period of 2m. So
T(r,08) = %a (r) + £ a (r)cosmd + b (r)sinmd . (1.3)
0 oom m
After substitution (1.3) intoc (1.1), there is derived
1d d 2 = _ 1
? E[r‘ﬁ ao} - K aO(P] = X (XO(F)
1d,.d m? 2 1
— H?[PEF am] - ;? am(r) - K am(r] = -5 am(PJ (1.4)
1d ., d m? 2 1
FE(I"E bmJ - ? b (I"] > K bm(r) B = X Bm(I‘)
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Here

1 2m

ao(r) il S W(r,0)dt ,

o

1 27

am(r) R é W(r,6)cosmédt ,
1 %"

Bm(r) ol é W(r,08)sinmbdt

The boundary conditions for ao(r), am(r), bm(r) are homogeneous.

The general solution of the first equation of (1.4) is

a (r) = AI (kr) + BK_(kr) +
) o o
4 T
by £ 3 IO(KE)KO(KP) - IO[KP)KO(Kg) aO(E) dg . (1.5)

Constants A and B are determinable from (1.2):

R
A= - ! Ky (kRIK! (kr ) f ET_(kE)a_ (£)dE+
AL (ke JK'(kR)-I'(kRIK'(kr_ ) r
8] [s] ] 0 ] 0

]
R
-Ié(KR]Ké(KFD) i) EKO(KE)G (g1)d¢g

r
0

’

(1.8)

R
B.o= = ] K2 (6RIIZ (er ) f EI_(kE)a_(E)dE+
A K'(kr )I' (kR)-K?{kR)I'(kr ) T
[m] ] Q [m] (8] (@]

0
R
-Ié(KR)Ié(KPO] S EKO(KE)GD(E)dE

r
o

Here IO(KP) and Ké(KP) are the Bessel functions of an imaginary

argument.

140



Rakenteiden Mekaniikka

There is now taken a point source of heat generation of
strength W per unit time, first by means of a spacewise constant
W(r,8) in a small volume formed by the surfaces r = p, r = p + &,
o = ¢, 6 =& +x, Z =20, Z=nh: the volume is then allowed to
shrink to zero, with the total strength W being kept constant. When

§ » 0 and x> 0, then

i oy P LR W
frﬁlo(KE]uO(E)dE = llmgfﬁﬁ /£ IU(KE)dE { Fde i~ IO[Kp),
0 §=0 P ¢
x>0 (1.7)
E . W P PEX 4 W
fr‘gKD(KE)OLO(g)dE = 11m6x—h5 J E KD[KE)dE J Fde = ﬁ KD(KQ)-
° 5+0 P ¢
x>0
When r, Sr< [
i W KS(KPO)IO(KP]-Ié(KPO)KO(KP)
aO(I‘) = = ﬁ'ﬁ Y
Ié(KPO)Ké(KR)-Ié(KR)Ké(KPO)
Ké(KR)IO(KO)‘Ié(KR)KO(KD) . (1.8)

and when p < r s R

W Ké(KFO)IG(KP)-Ié(KPD]KD[KF)

ao(r) = = X h

Ié( rO]Ké( R)-Ié( R]Ké(Kro]
Ké(KR]IO(Kp)—Ié(KR)KO(Kp] +

W
% TR KO(KP)IO(Kp]—ID[Kr]KD(Kp) .
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The general solution of the second equation of (1.4) is

a (r) = AL (kr)+BK (kr)+
m m m

r
J £ Im(KE)Km(Kr)—Im(Kr)Km(KEJ am(E)dE. (1.9)

r
o

/I

>

According to (1.2), and with the following expressions being taken

into account,

+

N W
S gIm(KE)am[E)dE = 1lim

p+8 ¢ 1 W .
Sxoh I & Im(KE)dEf Fcosmede— EFIm(Kp)cosmw ;
© §+0 ¢ »
x>0
: w08 ¢X 1 W
0 EKm(KE)am(E)dE = 11m§YBF I £ Km(KE]dEf Ecosmede— FFKm(Kp)Cosm¢ ;
o ¢
§+0
x>0

there are derived

Ké(KR]Im(KO]-I%(KR)Km(Kp)

K’ (kr_)
m 0

A = Awhcosm¢
Im(KR)Km(KrO)-Im(KrO]Km(KR)

(1.10)
K'(KR)Im(Kp)—I%(KR)Km(Kp)

B = cosmg I'(kr )
chuly I'(kr )K' (kR)-T'(kR)K' (kr ) 2
m 0 m m m o]

Similar expressions can be written for bm(r).

When r < r <P,
0

W
2mAh

T(r,0)

Ké(KPO)IO(KP)—Ié(KFD)KO(KF) &
)

'(KR)IO(KQ]‘IS(KR]KO(KOJ-’

Ié[KPO)KD(KR)‘ID(KR)KO(KRO) & 1)
K'(kr JI_(kr)-I'(kr J)K (kr)

_ XW - DL g Tin i S 1 l}'(KR)Im(KR)_Ié[Kp)Km(Kp)J
™ m I (kRIK! (kr =17 (kr K (kR)
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And when p<r < R ,

W K'[KFO)IO(KF]—IS(KPO]KO(KP)
T(r,8) = & I}é(KR)ID(Kp)-Ié(KR]KD(Kp) +

I'(kr JK'(kR)-I'(kR)K'(xkr )
[m] @] (8] 0 @] 0]
+ 2¥Ah &O(KP]ID(KD)‘IO(KF)KO(KD)}' (1.12)
K'(kr_J)I (kr)-I'(kr_ JK_ (xr)
= F%F g o o =0 %%(KR)Im(Kp)—I%(KRKm(KQﬁ
m I’ (kRIK’(kr )=I'(kr J)K'(xR)
m m 0 m o’ 'm

cosm(¢-6) + W?h ﬁ [}m(Kp)Km(KP]-Im(KF]Km(Kp)J cosm(¢-6)
T(r,8) is a continuocus function although its derivative %;T[r,e)
has a first order discontinuity at r = p(see fig. 1). At that point,
farmulae (1.11) and (1.12) give similar values for temperature.

The series given in (1.11) and (1.12) converges slowly by
reason of the inhomogeneity of (1.4) in fact, if Bessel functions
are presented as functions of their order m,it may be shown that
the general term of series (1.12) does not decrease more rapidly
than % . Thus the convergence of (1.12) must be improved, and if
this is to be achieved then some series which is the solution of
homogeneous equation (1.4) has to be subtracted from (1.12), homo-
geneous boundary conditions (1.2) have to be satisfied. This will

be the Green function of equation (1.4). Consequently instead of

(1.11) and (1.12), we can write
Fm(rp] = am(rp)‘gm(rp)

The Green function gm(rp) may be expanded in absolutely and uniformly

conyergent series along the fundamental functions of equation (1.4),
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with boundary conditions (1.2), and may be presented in the bilinear

form

Ym(r)Ym(p)

gm(rp) = i v

Here,

Im(P]Im(p) are fundamental functions, and

Vm characteristic values.
Thus for (1.4) ,
2
yredyr (@ v vy =0,
r F2

with the boundary conditions

-

the fundamental functions are
Ym = C Im(KYF)Ké(KYR]+Km(KYP)I'm(KYR)
Ym are the roots of equation
’ ] . ’ =
Im[KYPO)Km(KyR] Ié(KYR)Km(KYPO) 0

Constant C can be defined from the condition of normalization

R
s KZYi(r)dr - 1
r
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in similarity to am(rp), the Green function gm(rp) is continuous,
and its derivative has a first order discontinuity of the same

point r = p.

2. THERMAL STRESSES INDUCED BY THE TEMPERATURE FIELD

For solution of the thermoelastic equations, thermoelastic

potential 1 <can be introduced in accordance with equation

Ap(r,08) = (1+u) T(r,8) (2.1)

The stresses will then be derived from

_ 19 1 9
Iprp © 2 G(? ar ) Z)w b
r- 26
a2
O'ee = =20 ‘g‘—jw » (2.2)
r
_ 3 1 3
o = 2 6 3zlz 5p¥)
Here ,
¥ = Poisson's ratio,

o = the coefficient of thermal expansion, and
G = the modulus of rigidity

The normal stress L and shearing stress oL are zero at edges

e’

r =g and r = R, and thus, in view of formulae (2.2), we derive
£18—+1~i) =0, & 2y =0 (2.3)
rar 2 2 * 37'r 387 * :

r- 96 r=r r =
) 0
= R = R
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Equation (2.1) may be presented

in the folloving form:

52 19 1 37
——§w(r.6) + — =— (r,6) + — —=yp(r,0) = (1+WaTlr,6). (2.4)
r or 2
or r- 96
Y{r,8) must be periodic, with a period of 2m. Thus
Y(r,08) = %C (r) + Z [C (r)cosn® + d _(r)sinnd .J (2.5)
o N n n
After the substitution of (2.5) into (2.4), there are derived
4
d 1 d _ —
E_fco(r) . HFCD(P) = (1+u)aa0(r) ;
r
2 2
d 1d _n- o
E—?Cn(r) i = H?Cn(r) ZCn(r) (1+u)aun(r) i (2.8)
T ba
2 2
d 1 d n ~ =
'd—z-dn + ;Edn(r) - —7dn(r) = (1+U]OLBn(F) ’
r T
in which:
2m
co(r] == Jf ¢(r,06)do ,
)
1 2m
Cn(r) = o £ Y(r,0)cosnéde ,
1 27
dn(r) = é Y(r,6)sinn6do ,
= 1 2
ao(r) - S y(r,0)d6 ,
o
2T
En(r) = — [ y(r,8)cosnbdd ,
)
1 2
B,(r) = — f ¥(r,8)inn6do
0
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The general solution of the first equation of (2.6), with the

boundary conditions

g—C (r) = 0
ro
r=r
0
r = R |
I
is
R —_—
Co(r) = Clnr + 0 + (M+u)alnr S & alg)d & +
r
° (2.7)
r\ —
- (1+pw)a S £ lnguo(g)di
o
0
From the boundary conditions, C = 0, when r = ro- Furthermore,
R ——
/g o (¢)d £ = 0O
To

when r = R. If the last eguation is not fulfilled, the constant

pressure at rim r = R is easily removable. Now

T T
CO(P) =D+ (M+walnr [ an(g)dg - (1+w)a [ &ln Ea (E)dE ,
) To
9o (r) = el fE o (E)dE (2.8)
dr o - T > o >’ )
I-\CJ
g? 7 F -
;_7C0(P) = -(4+u)a—§ J £ ao(a)dg + (1+u]aa0(r).
: b T r

8]

Here, Eﬁ(r) is defined by (1.8), and the integrals in (2.8) are

i
Wy
¥
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r

r
u]

1 r
S £ I (kg)d € = —= [KPI (KP{] s
r, 0 K2 1 Ty

r ’ r
JeK (kg)d & = - — krK, (ke |
0

The stresses induced by this term of the series may be defined

by (2.2).

Consideration is now given to the second equation (2.8)

2
”'—?cnm v
dr r

ID_

C (r)
n

o

r

- D¢
n

with the boundary conditions

2
1d _n
? ECﬂ(PJ _ZCH(F]
r
e, =
i r
RR
1 d 1
; ECn(r) = '—Z'Cn(l‘]
r iy
p- _ =
9
The general solution of (2.9)
n -n r"
Cn(r) = Er + Fr t 5

-nr

is

r

i

(8]

o U,
8]
=0
]
(1+pu)a -
et eplEd e

= B (1+u)a —
—f-—_-n—_—1 OLn(E)d g

2n r £
0

(r) = (1+W)a &n(r),

(2.9)

(2.10)

(2.11)

It is evident that E and F of (2.11) can not be found from (2.10).

be found from (2.10). The normal and shear stresses at the rim

define the combined stress
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If the combined stress at the rims r = rg» = R equals zero,

"
pu)

The constants E and F are consequently determinable from the non-

linear boundary conditions

2 2 = 0 (2.12)

Conditions (2.12) present a system of second order equa-
tions, of which the first presents a real point (the result of
intersection of two imaginary lines), and the second a real
ellipse. However, it can not be demostrated in advance that this
point lies on the countour of the ellipse, and the system has two
real solutions, corresponding to the physical sense of the problem.
Instead of general solution (2.11) the simple particular solution

can be applied:

= r" r(1+p)a — r N P[1+u]a —
Cn[I‘) = ﬁ S Tan(i]di = F f'ﬁ Otn(g)dg (2.13)
r, £ ry £

Here an(g) is defined as (1.11) and (1.12)

The expression is the same for bn(r) dn(r) .
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In this case, and in accordance with (2.2) and (2.5), the normal

and shear stresses appear at rims r = r, and r = R, r = r_;
r = v Gr = 0; Oer =0
o
(2.14)
1= n2—
r = R; Opr =~ 26 7 A[RJ = Eﬁcé(R) (cosn® + sinnB);
n= 2N
Or OgRr = 26 |- ﬁCé(R] G E?CH[R) (sinn® - cosnb);
-2 r -n-2 r
o _R" ) (1+u)a— R (1+p)o—
O'RR 26 [ > (n-1) J’ —n_Tﬁn(E)dE o ) (n+1) S —“ﬁ'_—‘i—an(g)di
o E r. &
Mn
(cosn® + sinnB}
(2.15)
-2 R -n-2 R
_ _ R" _ (1+ula _ R (1+p)a—
OBR 26 > (n-1) ;I:—E;n—_:l-un(f-;]di > (n+1) I./:-——-F_n_,lanfﬁldf,
T — L o~ Ay
Nn
(sinn® - cosnf)
Then (2.16)
Opp = Mn(cosne + ginnd) ,
ORg ~ Nn(51nn6 - cosnb)

Thus, if these stresses can be removed from the rims, the problem
is solved.
On the outer rim of the ring, there is now assumed a system of

normal and tangent loads

qQ = -0 (2.17)

If there is now taken a biharmonic function ¢(F 0) which statisfies
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D(r,6) [D(r,6)¢ ( r,e)]= 0 (2.18)
2
Dir,0)z (2o 12w 12
are Tt 99

in which ¢(r,8) must also be periodic, with a period of 27

Thus  6(r,8) = U_(r) + z [Un(r)oosne + V_(r)sinne J (2.19)
n

Stresses can be found

2
13 1 39 _
O * T 3T o(r,0) + — ——§¢(r,6),
r- 96
82
Tgg * g—§¢(r,6);
r (2.20)
. -9 1 3¢
e 55T 38
On rim r = R, stresses ORR and ORG must attain the values of (2.17).

If all of thes is fulfilled, there can be written:

955 :(ﬁj(w) + oij(¢) (2.21)
The first term of (2.21) is derived from (2.2), (2.5), (2.8) and
(2.13). There are now determined the stresses defined by ¢(r,6)
with the boundary conditions (2.17).

After the substitution of (2.139) into (2.18) we have

D(r,68) |D(r,0) Uo(r]] = 0;
D(r,8) | D(r,8) [Un(r]cosné]]= 0; (2.22)
D(r,8) {D{P,GJ [Vn(r)sinne]}= 0.
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The boundary conditions are

d 3
E UO(F) = 0; (2.23)
S
= R
1d n2 0 ; r = ry
P H;Un[r)(cosne+sinne] - —§Un(r)(oosn6+sinn6)= ) (2.24)
p s r =R
nd n 0; r= r,
— 7=U (r)(sinn6-cosnd) - —U (r)(sinn6-cosnd) = (2.25)
r drn 2°n _
r g ;s =R
It is evident from (2.22) that Un(r) = Vn(r]
The general solution of the first equation of (2.22) takes
rz rlnr
UO(P) = Alnr + B + C Z—(lnr—1] + Dr(—ﬁ—— - lnr -1) (2.26)
From (2.23) there is obtained A=C=D=0.So Uo(r]=B.
The general solution of the second equation of (2.22) is
_ n -n A n+2 B -n+2
Un(r] = Cr + Dr Y AT NGB (2.27)
The constants C,D,A,B are determinable from the boundary condi-
tions
2 0; r=or
%%Un(r) - DU ) - g
r- -M ; r = R
n (2.28)
n d n 05w = Ty
- —U (r) - =U _(r) =
r drn P2 n _Nn‘ r = R

Thus the problem is solved in general although the expressions for
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oijiv) and oi.(¢] are extremely cumbersome.

For example, from (2.5) there can be written the expression

for the normal stress induced by the terms Cn(r) and dn(r).

. W  Bn n(n-1]|
(0 = + e s —
o .(v) G(1+u)a T kT [ ke, Kn(KrO)In_1(KP)+In(KrO)Kn_1(KF)} +

n-1
44 +

+ [ﬂ—1][Kn_1(KFO)In_1(KP]—In_1(KFD)Kn_1(KPﬂ - n(n—1)r e
Q

. nn+1) )| -
_K—rb KH(KPO)IH*'/' (KF)+IH(KPD)KH+1 (KP]J

n+1
r

- (n+1) [kn+1(KPO]In+1(KPO)Kn+1(Kr@]-ﬂ(n+1)rn+1 (cosnB+sinnbd);

p<r<R

W By {_ n(1-n)

<rg Kn(KFD)n_1(KF) + In(KrO]Kn_1[Krﬂ<+

ni1+n)
+ ——?ZT—W}n(KPO)In+1(KP) + In(KPO)Kn+1(KP)] -

= (1-n) [%n_q(KrO)In_1(Kr] = In_q(KPD)Kn_1(KP)] =

- (1+n) l}n+1(Kro]I

n+1(KP] = In+1(KFU)Kn+1(KrJ] +

n-1 r fs

(cosn8+sinnd) -

W 1

= G(’|+U]OL m E_P

—(1—n)[1n(Kp]Kn_1(KP) + Kn(Kp]In_1(KP)} -

- (1+n) In(Kp)Kn+1(KP) + Kn(Kp)In+1(KP)} +

n-1
+ - + ..P____ +
(1-n) In(Kp)Kn_1(KPO] Kn(Kp)In_q(KPO?} —

L

n+1

— n+150
+ (1_n) In(Kp)Kn+1(KFO)+In+1(KPD)Kn(Kpﬂ PO }(cosn6+sinn6);
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K'(kRJI (kp) - I'(kRIK (kp)
g - _n n n n ., me=ng; & =0
d I} (kRIK, (kr ) = 1! (ke )K'(kR)

Stresses oij(¢) have a first order discontinuity at point r = p,

but stresses oij(¢) are continuous (Fig. 1).

1.6
Y I\
E 1.21;-——11/ \\—
4; T~
~<| 10
E o8 \
g 06 \
£ 04
@
03
0 12 1.4 16 18 2.0
Radius
R:2;; peldn ; R 8 W

Klh=1; Kpsld;

- %/

Fig. 1.
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