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T INTRODUCTION

On comparison with other kinds of cable roofs, one with
negative Gaussian curvature is found to possess a number of archi-
Ttectural and statical advantages. However, the application of this
type of cable roof is justified from an economic standpoint only if
the edge beams, resisting the horizontal forces of the cable net, are
‘designed expediently. The bending moment free-edge beam, often ment-
vioned in literature, 1s reasonable only with a certain combination of
loads. As a rule, the live load induces an increase or diminution of
‘bending moments in the edge beam. Nevertheless, the edge beam is
: often considered to be absolutely stiff when analysis is made of the
iinner forces and deflections of the network. This supposition, how-
ever, leads to over-rating of the tensile forces in the carrying
(concave) cables, and to under-rating of the forces in the stretching
(convex) cables and the roof deflections. It is consequently essential

that consideration is given at the design stage to the co-operation

of the cable network with the edge beam.
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The methods of analysis developed at the Tallinn Polytechnic
Institute cenable computation of the inner forces in the cable roof,
and its deflections, with due account being taken of the horizontal
deflections of the edge beam induced by the forces of the cable net-
work. In this, however the cable network is regarded as being a
geometrically non-linear elastic system with limited strains (g << 1]
The edge beam is assumed to be a linear elastic system. The method
of analysis described below is applicable by employment of the both

the discrete computing scheme, and the continuous scheme.

2. INITIAL FORM OF THE PRESTRESSED CABLE NETWORK

As a rule, the initial form of the roof is taken as a well-
known surface that is easy to describe mathematically . A number of
them automatically satisfy the equilibrium conditions of a prestress-
ed cable network without external loads. The accomplishment of such
surfaces often proves rather troublesome, since in this case the
cables must be connected to each other in the nodes during the
prestressing procedure. Moreover, it is often difficult to choose the
correct shape of the edge beam that is statically suitable for a
given surface of the roof, and at the same time acceptable from the
aspect of erection. In many cases, it is necessary to be content
with a non-plane curved edge beam which may prove rather difficult
to carry into effect. Consequently, a great deal of interest is
attached to determination of the surface for a roof in which the
shape of the edge beam is given beforehand, and the nodes of the
cable net are themselves in equilibrium under the prestressing forces

of the cables. Of the possible variants of the surfaces, the most
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interesting are those which form themselves by the mutual free

sliding of the cables one against the other.

With the system of a freely sliding cable network, the

prestressing force is the same along the entire length of each cable,

and the equilibrium conditions of the node i, k (fig 1) are expressed

by the following vector-equation:
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the force in the i-th carrying cable from pres-
tressing only;

the corresponding force in the k-th stretching
cable;

the radius-vector of the node i,k;

the length of the k-th section of the i-th carrying

cable;

the length of the i-th section of the k-th stretching
cable.

r'i-llu"‘Fg ®
b&—d,n

P, ,,—F';,.

njdm

. i‘ioi,n = Fi.s
Ll bi.x
l"illﬂ"f'i,a
0,1, a:
"

Node i,k and cable forces acting on it.
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The three scalar-esquations that follow correspond to equation (1}:
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from which it is possible directly to find co-ordinates xik; Yi K3
Z; K of the net nodes, when the prestressing forces of the cables

S and the co-ordinates of the contour nodes are given. When

0i? Tok
the cable net is orthegonal on plan, and the cables of both families
are placed at the same intervals, a and b respectively, the follow-

ing equation is derived for the ordinate Z; , of the nede 1,k (41:

H  a
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where a - the length of the section of carrying cables (the
interval between the stretching cables]);
b - the length of the section of the stretching cables
(the interval between the carrying cables);
Gi - the horizontal projection of the inner force Soi
Hy - the horizontal projection of the inner force T .

To permit of (5] also being used for the nodes placed near

the contour (fig.2), it is necessary for some fictitious nodes to
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be employed outside the contour, for which there is obtained

z - — 7 . -=Z
_ "o,k a m, k 1,0 b i,n .

Zm+1,k n ail or Z1,n+1 b1 (6)
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where Z0 K> Zi o the ordinates of the contour nodes of the
k-th stretching and i-th carrying cablss

respectively

z Z. - the ordinates of the nodes of the k-th stretch-

ing and the i-th carrylng cable respectively,

next to ths contour nodes;

al ; b1 - refer to fig.2.
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Fig. 2 Co-ordinates of the nodes of a cable network.
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Fig. 2 provides an example in which the co-ordinates of a
cable net, comprising 9 carrying cables and the same number of
stretching cables, have been determined by the application of
equations (5) and (6]. In this case, the edge beam has been formed

by two plane half-circle arches,

3. INNER FORCES AND DEFLECTIONS OF A CABLE NETWORK WITH A
LIMITED NUMBER OF CABLES

For determination of the inner forces and deflections, in
general it becomes necessary to solve a system of equilibrium equations
and eguations of geometrical compatibility. The lengths of the sections
of cables, and their horizontal projections, have to Be found before-
hand by means of the formulae given in chapter 2. The deflections of
the contour nodes are to be found as linear functions of the inner
forces of the cables, with the help of the corresponding influence
lines. The total number of equations equals five times the number of
nodes.

With orthogonal cable networks, solution of the system is
markedly simplified. It has been established by computing experience
and experimental research work that it is possible, under the influ-
ence of vertical loads, to ignore in the equations those horizontal
components of displacements which are perpendicular to the plane of
the cable under examinations, Similarly, it can be accepted that the
horizontal projections‘of the inner forces of the cables are the same
in all sections of a cable. Furthermore it is accepted that the edge
beam, consisting of two plane arches, is supported by stiff vertical
columns, and can accordingly be displaced only in the horizontal

direction.

B8
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In this case, the system of equations assumes the following

faorm:
1 Hka
& !
Wik Aa [(”i,k—1 Wiket? * 5.8 Mion,c™Mien)
2[1+ 1
5.5
1
Hka i ka
C 22k k) e E Rk Pk e T | )

G, = G, + £y E Mi,0e1 1,1(21.2*1- i%,
i 0i E l1+(2i’£+1-2 ;2)2]3/2 e a a
%=1 2
W - m n
i,+1 "i,%) _ N & -
+ 53 ) j§1(Gj Goj]"ij £§1(H2 Hoz)ni'zcosa] s (8)
T EFy g Wewt, ks i fZae 1,6 2h 0k,
k ok ? [1+(Z.+1'k-2.'k)2]3/2 1 \
3=1 b
W -W, m n,_ . n
c_J+1.k i,k _ koj - _
' 75 jz1(Gj S04 sosa b, M Mo Mi,n | - (8)
where g_.; g.; H,, ; H - the respective horizontal projections of
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the foreces of the i-th carrying cable and
the k-th stretching cable before and after

application of the system or sxternal loads

Pik
Wi K deflection of the node i, k induced by
gxternal foreces P, H

i,k
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Z, - ordinate of the node i,k before application

of the external loads;

nN. .; ni'z - ordinates of the influence lines of the
horizontal deflsctions of the i-th point of
the edge beam in the vertical plane of j-th
carrying cable, or the 2-th stretching cable

raespectively.
- ordinates, but for the k-th stretching cable.

o - the angle of the inclined plane of the edge

bsam,

‘The system of equations (7), (8), (9) contains one unknown
quantity (wi,k) for every node, and one unknown quantity (Gi or Hk)
for every cable. The number of aquations is thus considerably reduced,
as comparad with the exact solution. At the sams time, the results
obtained on analysis by the application of this greatly simplified
means are wery well comparable with the results obtainable by both
the sxact method and experiment. Mention is also due that the solu-
tion system (7), (8), (9) can also be applied succesfully to an
unorthogonal cable network.

With solution of the systam of equations (7), (8), (9), it is
possible to recommend the following well-converging method of succes-
sive approximatian:

1) assume soms approximate values of deflections wi,k;

2) compute the preliminary approximations to inner forces Gi and

10
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H with the aid of (8), (9);
3) solve the system, consisting of equations (7) with respect to
deflections wi,k' and using the Gi and Hk newly determined;
4) repeat the process until the degree of prescision given earlier has
been achieved.

This method of approximation can very well be applied with an
electronic computer. Computing examplss with a 9 x 9 cable network
demonstrated that the solution of the problem took 10-15 minutes of
time of computer "Minsk-22", if it had been assumed that the edge beam
was stiff, and 22-25 minutes if the contour was deformable. However,
when the number of cables is not very large, say with a cable net of
5 x 5, it is practicable to effect the analysis by means of the more
usual arithmetical technique.

Fig. 3 provides an example of analysis of the deflections of
the nodes and the inner forces of the cables in relation ta the cabls
roof illustrated in fig. 2. This figure also indicates the results

obtained in an exact model test made at the hockey stadium in Tallinn.

It is apparent that the results coincids fairly well.
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Fig. 3 Comparison of the calculated results for deflections
and cable forces with experimental results.
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4. ANALYSIS OF A HYPERBOLIC PARABOLOID CABLE ROOF WITH A

CONTINUOUS CABLE NET

In the case of an unlimited number of cables in the solution,
instead of an algebraic system of equations (7), (8), (3) there will
appear a system of differential equations as follows:

9 +W H +

G
3x2 ay

that guaranteses equilibrium in the vertical direction, and two equa-

tions of geometrical compatibility:

X2 X2 X2
3u . AG [4.032\2]3/2, _ J’ w3z , 1 w
I ax 9% * B8 I U*(axj | x\5x * 7 ax)8x - (1D
Xy X, X4
5;2 Y2 . , Y2 auf 1
v AH J [ 32)2]3 2 I owf 3z aw)
—dy = = 1+ = dy - — + = Sldy L, (12)
)y ¥ ES, \3y y ay\dy * 2 3y)%
¥q Y1 ¥Y4q
where Gx; Gy - the reduced thickness of the cable net;

u; v - the horizantal displacements of the

network;

AG = G-GU - the increase in forces of carrying cables
on the unit of the width of the nat;
AH = H-H. - the corresponding increase in the

stretching cables;

x1=x1[y]; x2=x2(y) - the co-ordinates of the edge beam.

y1=y1[x); y2=y2(x)

12
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Note: in the composition of equations (11) and (12) use has

bean made of the wellknown non-linear geometrical expressions

_ 1 U owfdz 1 ow
e = —_— ] s = — »
X 1+( 92 ax 9ax\ 9x 2 9x
X
e # 1 [_31+M(£+lﬂ)],
y 1+( 82213y  3y\dy 2 oy
ay

and the expressions of Hocke's law:

MG [4.(32\2]1/2
x T E5, [1‘(a ) ] '

x

The analysis of a hyperbolic paraboloid cable roof follows as
an example. It has an elliptical edge beam on plan, which is sup-
ported by the vertical columns, so that the edge beam can bse dis-
placed only in the horizontal dirsction. In this case, it is reason-
able to approximate the deflection function w of the roof in the

form

. R COIOICREEE) (13)
aeb, ... teb,1... 5ot RS2 Ty |
which automatically satisfies the boundary conditions on the entire
contour (w=0). After substitution into equation: (11), (12) of the
partial derivatives of z and w with respect to x and y they
can be solved with respect to the inner forces of cables AG; AH.
The forces so found are introduced into (10)}. Care is required to

ensure that the 1eft-hand side of eq. (10) modified in such a way

13
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corresponds most satisfactorily to the load function qixy). This is
achievable in many ways (say by the application of Bubnov-Galerkin's
method). There is thus derived a system of equations with respect
to the unknown parameters W g The left-hand sides of eq. (11),
(12) can be expressed by the horizontal displacements of the edge

beam induced by the forces of the cable net. If the load is
distributed svenly over the whole roof, the horizontal loads on the

edge beam are distributed almost parabolically (fig. 4). The edge

beam is consequently loaded by corresponding distributed loads, as

follows:
Z /
AG = max AG(1 - x?) p
b
><2
AH = max AH(1 - —7) ;
a

f—o0a

AG=maxAG(I—%':)

X

/

U aH =moxaH(1- %)

Fig. 4 Distribution of the horizontal loads on the
edge beam
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and the corresponding displacements of the edge beam ars

EJAxx = -ma; AG(1 = i;)B/Z [1% + é%( i;j51137113 , (14)
EID,, = max AG(‘I : :_;)3/2 [% - 21-( i;)]aa/z s ,  (15)
E3D,, = max AH(1 - f;)yz [% - 2l( - f;)]f-y—z;{z (16)
EJA, = -max AH(1 - §)3/2 [% . '13( §)] - (17)

After evaluation of the displacements of the edge beam
according to formulae (14) to (17), and consideration of only ons

term Wo ¢ =W in expression of the deflection function (13), the

0,0
following equation is derived for solution of the problem:

cg(1+¢+4g) . 3;5[(1-wa)+25(1—a)] . 2;0[(1+¢a2) R

(18)
# 5(1_a)2 + )+ Ag(n%)] - q*[1+g(1+%)] )
" w1 0
where L = -%Lg; ;1 = 2 - the relative paramsters of ths
X X
deflection function;
¥2
¥ aady(1 +% _E)
a=?¥; Y= a2 - the geometrical parameters;
X f
4. ( 5
0%, {1+ 3 ﬁ)
2
2( a
9a \G0+HO ;5) / 5?2
A= \1 + 2) - the prestressing factor;
3 3a
10ES§ _f
X X
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4 5F
q* = _gg_g__(1 + ——;) - the load factor;
19E6x+'x Ja
5E a7/2b-1/2 .
N Y - the parameters of the bending

72E3(1+5¢ 2/3p2)
y stiffness of the edge beam.

The corrassponding changes in the inner forces are

2
- 2
oE 5E6xfxco[(2+;0)+2£(1 “’?0)](1_,\/_) ’ (19)
9a’(1+5F2/38°) [1+6(1+7) ] Vb2
-5E8 fzg [(2a-T )& E(1-a+g_ )] 2
AH = ¥ %70 v . 0 {1—57) (20)
9b2[1+5F§/3b2]I1+E{1+$]] A a
From (18), representing an algebraic cubical equation,
:0 = WO 0 Fx can be evaluated by the method of successive approxi-

mation. In a analogous way, the problsm can be solved when the loads
area distributed unsymmetrically, for example in the direction of the
carrying cables. In this case, if once again we are content with

only one term in (13), the deflection parameter will be (that

w1.0

is, s = 1; t = 0) and the way of solution closely resembles that
described above.

Fig. 5 illustrates the dependsnce of the relative deflection
wU,O fx upon the load factor q* when the live load is on the whole
surface of the roof aqd alsa when only one half of it is loaded. In

this exampls, it is assumed that the live load (p) equals the dead

load (g).

16
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stretching cables due to loading.

6 Changes in the forces in the carrying and
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Fig. 7 Dependence of the relative deflection upon the
bending stiffness of the edge beam.

The changes in the forces in the carrying and stretching
cablas arising from the increase in the loads, are indicated in fig.
6. It is (noteworthy that initially) the forces of the stretching
cables diminish with increase in the loads. Subsequently, this
diminution is retarded, and at a certain load the forces in the
stretching cables begin once again to increase again. This implies
that the stretching cables have recommenced work as tension members
resisting the horizontal thrust of the edge beam. In this phenomenon
of co-operation between the cables and the edge beam, an essential
reserve is hidden, economically to raise the stiffness of the
structure. In many cases, it appears more reasonable to increase the
tension stiffness of the stretching cables, rather than the bending
stiffness of the edge beam. A reasonable interval for the stiffness
of the edge beam is illustrated in fig. 7. It is observable from
this that the maximum vertical deflections with the diminution in
stiffness of the edgelbeam asymptotically approach a certain limit,
which is dependent upon the external loads and parameters of the

cable net.
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