

A new paradigm for fatigue analysis evolution equation based continuum approach

Joonas Jussila¹, Terhi Kaarakka², Sami Holopainen³, **Reijo Kouhia**³, Jari Mäkinen, Heikki Orelma³, Niels Saabye Ottosen⁴, Matti Ristinmaa⁴ and Timo Saksala³

 1 AVANT Techno Oy 2 Tampere University of Technology, Mathematics 3 Tampere University of Technology, Civil Engineering

 4 Lund University, Division of Solid Mechanics

50 years anniversary seminar of Rakenteiden Mekaniikka, Vaasa, August 24-25, 2017

Combout	2 Fatigue model
Content	3 Endurance surface
	4 LCF-HCF
	5 Stochastic
Introduction - fatigue models	6 Stochastic
	7 Conclusions
2 Evolution equation based HCF model	
3 Endurance surface	
4 LCF-HCF approach	
5 Stochastic analysis	
6 Gradient effects	
-	< = >
7 Concluding remarks and future work	
Concluding remarks and future work	গ্ৰন্থ

1 Introduction

1	Introduction - fatigue models	1 Introduction
		2 Fatigue model
0		3 Endurance surface
2	Evolution equation based HCF model	4 LCF-HCF
		5 Stochastic
	Endurance surface	6 Stochastic
0		7 Conclusions
4	LCF-HCF approach	
	Stochastic analysis	
	Gradient effects	
	Gradient enects	
		< □ > < @ >
7	Concluding remarks and future work	< ≡ >
		< 主> 王
		500

₩ ™

Introduction - fatigue models

Problems in fatigue analyses:

- Multiaxiality
- Damage accumalation rules
- Low-cycle- and high-cycle -fatigue regimes are treated separately
- Mostly based on well defined cycles.

A more fundamental approach for HCF based on *evolution equations* proposed by Ottosen, Stenström and Ristinmaa in IJF 2008.

It provides a well defined and consistent approach for *multiaxial* fatigue analysis which can be "easily" extended to *anisotropic* and *stochastic appraches* and in which the *gradient effects* can be included. In addition, the LCF and HCF regimes can be treated in a uniform

manner.

1 Introduction

2 Fatigue model

3 Endurance surface

4 LCF-HCF

5 Stochastic

6 Stochastic

7 Conclusions

1	Introduction - fatigue models	1 Introduction
		2 Fatigue model
•		3 Endurance surface
2	Evolution equation based HCF model	4 LCF-HCF
		5 Stochastic
		6 Stochastic
3	Endurance surface	7 Conclusions
1	LCE-HCE approach	
4		
	Stochastic analysis	
	Gradient effects	
		< • • •
		< 🗗 >
	Concluding remarks and <i>tuture work</i>	< 注 > < 注 >
		うくで

Evolution equation based HCF model

Key ingredients are:

Endurance surface

$$\beta(\boldsymbol{\sigma}, \{\boldsymbol{\alpha}\}; \mathsf{parameters}) = 0,$$

evolution equations for damage D and the internal variables $\{\alpha\}$

$$\{\dot{\alpha}\} = \{G\}(\sigma, \{\alpha\})\dot{\beta},$$

and

$$\dot{D} = g(\beta, D)\dot{\beta}.$$

1 Introduction

2 Fatigue model

- 3 Endurance surface
- 4 LCF-HCF
- 5 Stochastic
- 6 Stochastic
- 7 Conclusions

1 Introduction

Endurance surface

Original formulation by Ottosen et al. for isotropic fatigue

$$\beta = \frac{1}{\sigma_{-1}} \left[\sqrt{3\bar{J}_2} + AI_1 - \sigma_{-1} \right] = 0,$$

where $\bar{J}_2 = \frac{1}{2} \operatorname{tr} (s - \alpha)^2$, $I_1 = \operatorname{tr} \sigma$, $A = \sigma_{-1}/\sigma_0 - 1$, and

1 Introduction

2 Fatigue model

3 Endurance surface

4 LCF-HCF

5 Stochastic

6 Stochastic

7 Conclusions

Effect of mean stress

The model describes well the mean stress effect in cyclic tension as well as the non-linear effect on mean shear stress on the fatigue strength.

Transversely isotropic case: forged 34CrMo6 steel.

1 Introduction 2 Fatigue model

6 Stochastic 7 Conclusions

3 Endurance surface 4 LCF-HCF 5 Stochastic

Anisotropic case

So far transversely isotropic and orthotropic symmetry has been considered. Formulation based on structural tensors. Denoting: $\tau_{-1} = \eta \sigma_{-1}$, consider biaxial loading

$$\sigma_x = \sigma_m + \sigma_a \sin \omega t, \quad \sigma_y = \sigma_m + \sigma_a \sin(\omega t + \phi)$$

2 Fatigue model 3 Endurance surface 4 LCF-HCF 5 Stochastic 6 Stochastic

1 Introduction

7 Conclusions

Some results - HCF industrial test case

Transversely isotropc HCF-analysis of a forged 34CrMo6 steel fillet. The fatigue model is implemented in Abaqus FE program using the UMAT subroutine. Colour shows the value of damage D.

1 Introduction

2 Fatigue model

3 Endurance surface

4 LCF-HCF

5 Stochastic

6 Stochastic

7 Conclusions

12/22

AMPERE UNIVERSITY OF TECHNOLOGY

A new paradigm for fatigue analysis – RK RM50, 2017

Introduction - fatigue models	1 Introduction 2 Fatigue model
Evolution equation based HCF model	3 Endurance surface 4 LCF-HCF 5 Stochastic
Endurance surface	6 Stochastic 7 Conclusions
LCF-HCF approach	
Stochastic analysis	
Gradient effects	
Concluding remarks and future work	日
	Introduction - fatigue models Evolution equation based HCF model Endurance surface LCF-HCF approach Stochastic analysis Gradient effects Concluding remarks and <i>future work</i>

LCF-HCF approach

Evolution equation for the α -tensor

$$\dot{\boldsymbol{\alpha}} = C(\boldsymbol{s} - \boldsymbol{\alpha})\dot{\boldsymbol{\beta}}$$

and for damage

$$\dot{D} = K \exp[L \exp(-\xi \bar{\varepsilon}_{\rm p})\beta + M \langle \operatorname{sgn}(f) \rangle \bar{\varepsilon}_{\rm p}] \dot{\beta}$$

Plasticity model based on Armstrong-Frederick model

$$\begin{split} f(\boldsymbol{\sigma}, \boldsymbol{X}, R) &= \sqrt{\frac{3}{2}(\boldsymbol{s} - \boldsymbol{X}) : (\boldsymbol{s} - \boldsymbol{X})} - (\sigma_{\mathrm{y}} + R) = 0 \\ \dot{R} &= \gamma R_{\infty} \left(1 - R/R_{\infty}\right) \dot{\bar{\varepsilon}}_{\mathrm{p}} \\ \dot{\boldsymbol{X}} &= \frac{2}{3} X_{\infty} \dot{\boldsymbol{\varepsilon}}_{\mathrm{p}} - \gamma \dot{\bar{\varepsilon}}_{\mathrm{p}} \boldsymbol{X} \\ \dot{\boldsymbol{\varepsilon}}_{\mathrm{p}} &= \dot{\lambda} \frac{\partial f}{\partial \boldsymbol{\sigma}} \end{split}$$

券

1 Introduction

2 Fatigue model

3 Endurance surface

4 LCF-HCF

5 Stochastic

6 Stochastic

7 Conclusions

on in in ⊡ on in in ⊡ or or or or

Illustration in deviatoric plane

2 Fatigue model

3 Endurance surface

4 LCF-HCF

1 Introduction

2 Fatigue model

3 Endurance surface

4 LCF-HCF

6 Stochastic

7 Conclusions

$\Delta\varepsilon\text{-N}$ curve in LCF-regime - AISI 4340

ASTM Handbool (Coffin-Manson + Basquin):

$$\frac{\Delta\varepsilon}{2} = 0.58(2N_{\rm f})^{-0.57} + 0.0062(2N_{\rm f})^{-0.09}$$

1	Introduction - fatigue models	1 Introduction 2 Fatigue model
2	Evolution equation based HCF model	3 Endurance surface 4 LCF-HCF
3	Endurance surface	6 Stochastic 7 Conclusions
4	LCF-HCF approach	
5	Stochastic analysis	
5	Stochastic analysis Gradient effects	

Stochastic analysis

We have considered stress processes as Ornstein-Uhlenbeck process (a stationary Gauss-Markov process depending on parameters λ, μ and η)

 $d\boldsymbol{\sigma}(t) = \boldsymbol{\lambda}(\boldsymbol{\mu} - \boldsymbol{\sigma}(t))dt + \boldsymbol{\eta}d\boldsymbol{W}(t)$

Process $\boldsymbol{W}(t)$ is a Wiener process (Brownian motion)

It is a stochastic differential equation, solution can be found as

$$\boldsymbol{\sigma}(t) = \boldsymbol{\mu} + (\boldsymbol{\sigma}_0 - \boldsymbol{\mu}) \exp(-\boldsymbol{\lambda}t) + \boldsymbol{\eta} \int_0^t \exp(-\boldsymbol{\lambda}(t-s)) \mathrm{dW}(s),$$

where the integral is the so called $\ensuremath{\mathsf{It}\hat{\mathsf{o}}}$ integral wrt the Wiener process.

1 Introduction 2 Fatigue model 3 Endurance surface

4 LCF-HCF

5 Stochastic

6 Stochastic

7 Conclusions

1	Introduction - fatigue models	1 Introduction 2 Fatigue model
2	Evolution equation based HCF model	3 Endurance surface 4 LCF-HCF 5 Stochastic
3	Endurance surface	6 Stochastic 7 Conclusions
4	LCF-HCF approach	
	Stochastic analysis	
6	Gradient effects	
7	Concluding remarks and future work	日

Gradient effects

Simply substitute

$$\sigma_{-1,\text{corr}} = \sigma_{-1}(1 + \sqrt{As}),$$

where

$$s = \frac{\nabla \sigma_{\text{eff}} \cdot \nabla \sigma_{\text{eff}}}{\sigma_{\text{eff}}}$$

where $\sigma_{\rm eff}$ is the standard von Mises stress.

 \boldsymbol{A} is the only additional material parameter (the Neuber parameter)

1 Introduction

2 Fatigue model

3 Endurance surface

4 LCF-HCF

5 Stochastic

6 Stochastic

7 Conclusions

<

1 Introduction - fatigue models	1 Introduction
2 Evolution equation based HCF model	2 Fatigue model 3 Endurance surface 4 LCF-HCF
3 Endurance surface	5 Stochastic 6 Stochastic 7 Conclusions
4 LCF-HCF approach	
5 Stochastic analysis	
6 Gradient effects	
7 Concluding remarks and <i>future work</i>	日 日 日 日 日 日 日 日 日 日 日 〇 〇 〇 〇 〇 〇 〇 〇 〇

Concluding remarks and future work

- Consistent unified approach
- Can be "easilily" extended to anisotropy, stochastic analysis, gradient effect can be included
- Parameter estimation
- Micromechanical motivation of the evolution equations.

Watercolor by Pia Erlandsson

Acknowledgements: The work was partially funded by TEKES - The National Technology Foundation of Finland, project MaNuMiES.

Thank you for your attention!

TAMPERE UNIVERSITY OF TECHNOLOGY

- 1 Introduction
- 2 Fatigue model
- 3 Endurance surface
- 4 LCF-HCF
- 5 Stochastic
- 6 Stochastic
- 7 Conclusions

-		►
	ð	₽
	1	₽
	E	Þ
	Ē	
9	Q	¢