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CONCRETE STRUCTURES, ADVANCED 
COURSE  Rak-43.3110 

• Concrete-concrete composite structures and prestressed
concrete structures

• Lectures, 10 times, on Mondays 14 -16 ( Dos. Matti 
Pajari, matti.pajari@vtt.fi, p. 050-5821 736)

• Exercises 10 times on Tuesdays 12-14 (DI Pekka 
Häyrinen)

• Target: to understand the basics
• A collection of formulae delivered in examination, no own

literature allowed
• Eurocode 2 to some extent
• See also Lin & Burns, SI version 
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Analysis of homogenous beam with elementary beam theory

Normal force N and bending moment M are 
acting at the centroidal axis, see Fig. 2.

Fig. 2. Notation.Here 
A is   the cross-sectional area,
I the 2nd moment of area with respect to the centroidal axis 
y  vertical coordinate, origin at centr. axis, positive downwards,
E elasticity modulus.

Stress and strain are obtained from: 
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The deflection f is of the form 

EI
,...)L,q(ff Function f depends on loading, geometry etc.
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Consider the cross-section shown in  Fig. 3 and comprising n components. 
Ak ja Ek area and elasticity modulus on part  k (k = 1,…,n)
h distance to bottom fibre of section
hpp,k centroidal (pp) distance of part k to bottom fibre of section
yk vertical coordinate, origin at centroid of part k , posit. downwards
Ikx 2nd moment of area of part k around arbitrary horizontal axis x
Ik 2nd moment of area of part k around its own centroidal axis 
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Analysis of composite beam with elementary beam theory 

Fig. 3. Notation.
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Remember that centroidal axis and 
neutral axis have a different meaning

It is well-known that:

(Steiner’s rule)
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Definitions: Axial stiffness of composite section

Distance of centroidal axis of composite section 
to the bottom fibre of section

Bending 
stiffness of 
composite 
section

Axial stiffness is the cross-sectional area weighted by elasticity 
moduli.  hpp gives the position of the centroid of the weighted area.

If Ek = E for all k,  i.e. the whole section is homogenous, 
AE)EA( IE)EI(

In other cases the symbols (EA) ja (EI) must not be interpreted as a 
product of E and A or I. The physical meaning of (EA), hpp and (EI)
becomes clear on the next few pages.

and

(Steiner’s rule)

Ikpp 2nd moment of area of part k around centroidal axis of 
composite section
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A1 = 200x300 - 240x190 = 14400

A2 = 500x100 = 50000

hpp,1 = 150 hpp,2 = 350

(EA) = 210x14400 + 30x50000 = 3,024x106 + 1,50x106 = 4,524x106

hpp = (3,024x106x150 + 1,50x106x350)/(4,524x106) = 216,3

I1 = 200x3003/12 – 190x2403/12
= 2,3112x108

I2 = 500x1003/12  = 4,167x107

2
2,pppp222

2
1,pppp111 )hh(AIE)hh(AIE

= 210x[2,311x108+14400x(216,3 - 150)2] + 
30x[4,167x107+50000x(216,3 - 350)2]

= 8,99x1010

(EI)

A formal example:

Fig. 4.
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In Fig. 5 normal force N and moment 
M act at the centroidal axis

Fig. 5. Notation. y0
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The horizontal strain can be ex-
pressed using curvature and strain  

0 at the centroidal axis in the form y
N

M

hpp 0h
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Fig. 6. Example of strain and stress 
distribution in composite section.
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If the section is homogeneous:
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Stress in material k:
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If N = 0, then y = 0, = 0 ja = 0 at the centroidal axis. 

In this case the centroidal axis and neutral axis ( = 0) coincide.

0
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E3=3E1

E2=2E1

Section
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Transformed cross-sectional characteristics 

Assume that a cross-section comprises q different E-moduli. Transformed 
areas  Ak,m are defined using the ratios of elasticity moduli nk :

0

k
k E

En kkm,k AnA

Definitions: 

E0  may be any fixed Ek , k =1,…,q 
(base material)

Transformed 2nd moment of 
area 

Transformed area

Position of 
centroid

It follows that )EA(AE m0 )EI(IE m0and
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The strain in the base material:
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The transformed cross-sectional characteristics Am and Im are particularly 
widely used in the analysis of concrete  stresses in prestressed concrete 
structures because, when the concrete is chosen for the base material,  
the calculations are similar to those used for homogenous cross-sections. 
The strain of the concrete and the stresses of the steel are less important 
in the service conditions. 
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Example. Reinforced concrete section . The 2nd moment of area of 
the rebars around their own centroidal axis is negligible. c+s refers to 
the zone occupied by either concrete or steel.
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Fig. 7. The steel section is made 
ns times wider .

Small
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A beam section is loaded 
by axial force N and  
moment M, see Fig. 8.

Calculate the resultants of the axial stresses 
of part  k (k = 1,2) around their own 
centroidal axis using their own (EA)k and  
(EI)k :
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Fig. 9.

Fig. 8. 

N and M carried by different parts of composite section
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is called composite stiffness coefficient. If it equals 0, there is no 
composite action and the bending stiffness of the section equals the 
sum on the stiffnesses of the parts.
Example:
- 2 identical adjacent beams,  lv = 0
- 2 identical superposed slabs,

Fig. 10.
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Calculation of deflections

m0IE
M
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M''f

Deflection f  is solved from differential equation

For a homogeneous beam

IE
M''f

All calculation rules developed for a homogeneous beam can be 
applied when the product  E I is replaced by  (EI) or E0Im.

In the same way, the longitudinal deformation of a beam at the 
centroidal axis can be calculated using the rules developed for a 
homogeneous beam when the product E A is replaced by axial 
stiffness (EA) or E0Am.
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qL
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4
E.g. Deflection due to uniformly distributed load  q is  
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Shear according to elementary beam theory

A free body diagram for the part  with length x below 
section ABCD is shown in Fig. 13. The equilibrium of 
horizontal forces gives for force T and shear flow  Fv = 
T/ x :
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TF k is extended over all indices 
of parts below ABCD

Fig. 12. Section.

Fig. 13. Free body 
diagram below 
ABCD.
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Consider the shear along the interface ABCD (horizontal 
or not) shown in Fig. 12. Indices j and k refer to the parts 
above and below the interface, respectively. 

x
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d

The change of normal stress in distance x is 
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When N is independent on x
(this is not always the case) 

In a horizontal interface, shear stress is obtained from

k and j are extended 
over all indices of 
parts below or above 
ABCD, respectively
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Fig. 12b.

Fig. 13b.
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Prestressed structures common in Finland
• Hollow core slab
• Double tee slab (TT slab) and pitched double tee slab
• I-beam and and pitched I-beam
• Inverted T-beam
• Solid plank
• Railway sleeper
• Prestressed box girder (in bridges)
• Flat slab 

Part II. Prestressed structures
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Pitched double tee slab

Solid plank, only the 
lower part prestressed

Fig. 14. Examples of prestressed 
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Pretensioned tendons

Fig. 22. According to Leskelä [BY210].

Precasting bed

Tendons

Passive endActive end

Stage 1: Pretensioning

Stage 2: Casting

Stage 3: Release of prestress

Hydraulic 
actuator
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Post-tensioned tendons

- Install the duct into the moulds with or without tendon and fix  firmly
- Posttensioning after the concrete has hardened
- Place the tendon into the duct if it is not already there
- Fill the duct with grout (not for unbonded tendons)  

Fig. 23. According to Leskelä [BY210].

Tendon + duct
Hardened concrete

Active anchor Passive anchorHydraulic 
actuator
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Terminology

• Tendon: Wire, strand, bar or a bundle made of these which is 
tensioned  simultaneously and which is treated as one component in 
calculations

• Pretensioning: Tensioning first, concrete is cast  afterwards
• Post-tensioning : Concrete is cast first, tensioning afterwards against 

the hardened concrete
• Bonded tendon: There is bond between the tendon and the concrete, 

may be anchored tendon which is grouted or prestressed tendon 
without anchors

• Anchored tendon: The ends of the tendon are fixed to special anchors 
which transmit the tensioning force to the concrete

• Unbonded tendon: Anchored tendon which is not grouted
• Grouting: Filling the open space in a duct with pressurized, 

cementitious grout
• Partial prestressing: Both normal and prestressing steel are used, 

cracking allowed in serviceability limit state
• Active reinforcement: Prestressed steel
• Passive reinforcement: Non-prestressed steel
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Why prestressing?

• To prevent cracking e.g. to improve
– Durability (e.g. parking garages)
– Water tightness  (water reservoirs)
– Air tightness (reactor buildings in nuclear power plants) 
– Control of deflections 
– Light weight
– Aesthetics

• To prevent cracking during execution (e.g. piles)
• To reduce false work and moulds on site (solid planks, segmental 

bridges)
• To facilitate production (e.g. hollow core slabs)
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Analysis of pretensioned beams
(The losses of prestress are first ignored)
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Stage I: The tendon is pulled with force P. The stress of the steel is
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Stage II: (Hardened concrete): The tendon is released i.e.  
at the ends of the tendon, the counterforce of P is applied. 
This counterforce will load the whole cross-section. The 
stresses are are calculated from 
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(initial prestress) 

(concrete) 
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Ap and Ep are the cross-sectional area and elasticity modulus of the tendon. 
Ec is the elasticity modulus of the concrete, Am ja Im are the transformed 
area and second moment of area of the cross-section, steel included.

Fig. 24.

Fig. 25. Stages I and II.
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Rak-43.3110   2010  M. Pajari 23

Stage III: The stress of the concrete ( c,g+q ) and steel ( p,g+q) due to 
the self weight g and outer load q are
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qg,p y
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n

Above, the stresses due to different actions have been superimposed. 
The principle of superposition is also applied when there are several 
tendons. The effect of all tendons is the sum of the effects of each 
individual tendon.

When considering the stress state of a member, the release of the 
prestressing force P is equivalent to applying an outer normal force 
equal to P at the ends of the prestressed member. 

Mg+q is the sum of Mg and Mq.  Mg and  Mq are the bending moments 
due to g and q, respectively. The stresses of stage III are 
superimposed to the previous stresses.
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Fig. 26.

Several tendons: Pk , Ap,k , Ep,k ,, yp,k , np,k as above, but refer to tendon k. 
Notation:
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1. The losses of prestress are taken into account by reducing the 
prestressing force in the expressions above by a reduction factor which 
corresponds to the losses (creep, shrinkage, relaxation). In other words, P
is replaced by P, < 1,0.

A c I c, A br Ibr A m Im,,
Fig. 27. Net, gross and 
transformed section.

2. P or Pk are the prestressing forces before the release. During the 
release, the stress in the tendon is reduced due to  an elastic strain, but  
this  is neither a loss nor is it allowed to reduce the prestressing force in 
the expressions above. Instead, the expressions can be used to solve the 
elastic strain due to the release.

Comments

3. In the British and American textbooks and 
practice, the gross cross-sections are often
used istead of transforced sections. The gross-
section is obtained by replacing all steel with 
concrete, see Fig. 27. In ordinary members 
the error due to this approximation is small 
(the inner forces are not in perfect equilibrium) 
and usually on the safe side.
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4. The gross values Abr, and Ibr are suitable to the preliminary design in 
which the exact amount and location of the tendons is not known.

5. The magnitude of the prestress does not affect the stiffness.

6. The expressions above are suitable to calculation of stresses and 
cracking moment.

7.  The expressions above are suitable to straight tendons only and 
statically determined structures. 

8. The prestressing force at the end of the beam is equal to 0 and in-
creases to the full prestressing force within a certain length called transfer 
length which depends on the bond properties of the tendon, concrete and 
vertical position of the tendon. This is taken into account when calculating 
the stresses next to the beam end. To prevent excessive cracking of the 
beam end, it is  sometimes necessary to debond some tendons at their 
ends. When calculating the deflections and the stresses outside the trans-
fer zone, full prestress is assumed for the whole length of the tendon. 
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The deflections in the SLS (serviceability limit state) are calculated as 
for a composite beam loaded by an eccentric, compressive force  P. 
The second derivative of  deflection w is

In particular, the second derivative of wp due to P is

(Note: Mohr’s analogy) 

In the mid-span: 
Fig. 20.
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E.g., for the beam in  Fig. 20 
wp(0) = wp(L) = 0 D = 0 and 
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Analysis of post-tensioned beams
(Losses of prestress are assumed to be = 0)

Consider first the effect of the prestress on a free body diagram 
comprising one end of a simply supported beam after post-tensioning 
but before grouting, see Fig. 28. The prestressing force is = P.

Outer axial forces = 0 compression resultant of concrete C = Pcos  P
Outer moment = 0 C & P act along the same axis 

Fig. 21.

y
I
Py

A
Py

I
Cy

A
C

c

P

cc

P

c
c

Note 1: c depends only on P and its line of action.
Huom 2: The result is not in force for statically undetermined beams .

(Ac < Abr < Am and  Ic < Ibr < Im)

yyp

P

Centroidal axis of concrete

c

C
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A more general solution is obtained in another way. The tendon is 
considered a free body subjected to forces generated by the concrete. 
These forces are first determined.  Thereafter, the concrete is 
regarded as a free body subjected to forces which are equal but 
opposite to the forces on the tendon (Newton’s 3rd law). It is first 
assumed that the forces parallel to the tendon vanish excepth the 
anchoring forces.

A straight tendon is loaded by the anchor forces at the ends only.

When the direction of the tendon changes by an agle , see Fig. 22, 
a force 2Psin( /2) is needed to balance the axial tendon forces.

Fig. 22.

For small values of

2Psin( /2)   2P( /2)=P
P

P
2Psin( /2) 

Psin( /2)
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For a curved tendon, the symbols shown in Fig. 23  are used. The aim 
is to determine the force distribution q(x) perpendicular to the tendon.

qr...dsinqrP
2/

0

There is a force = P at both ends of the 
tendon (anchor force). Due to the 
assumption of no friction, there are only 
transverse forces. Their distribution is 
given by q(x).

Special case 1. A circular arc, uniformly 
distributed q. Using the symbols shown 
in Fig. 24, the horizontal forces are in 
equilibrium if

Fig. 23. Curved tendon.

Fig. 24. Circular tendon.

x

PP
q(x)

u=u(x)
u

r
q
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Qsind

rd
Q=qrd

, from which

r
Pq

Rak-43.3110   2010  M. Pajari 31

Fig. 25 shows a free body diagram of a cut of an arbitrary curved arc u=u(x).
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For small values of :
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udPqResult:

Fig. 25.
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The same result is obtained from vertical equilibrium, when sin = 0.

ssinqdssinqssinq

Pu=u(x)

s
xP

q=q(x)

dssinqQhorHorizontal component of q is 

ssinqQhor where 
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u=r-(r2-x2)0,5+u(0)
r

x=rsin
u

Example. Circular arc in  Fig. 26:
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1cosP

xr

x
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1cosP
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dx
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22
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3
22

2
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Special case 2. Parabola u=ax2+bx+c

3
2

2
3 cosPa2

dx
udcosPq

Fig. 26.

qsin
qcos q

The vertical and horizontal components of q, i.e. qv and qh (Fig. 27) are
4

v cosPa2q sincosPa2q 3
h

Fig. 27.

For small values of : Pa2qqv 0qh
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The 2nd derivatives of parabolas  u=ax2+bx+c ja  v=u+(kx+t) are the 
same. Consequently,  a linear change in a parabolic tendon geometry 
results in a slight change of  q due to the term cos3 and a slight change 
in the direction of q. Normally these changes are ignored in the design 
because in ordinary structures  cos equals 1,0 with a great precision. A 
linear change in the tendon geometry affects the support reactions which 
may have consequences in the design of the supporting structures. 

Fig. 28 presents the parabola

2

2 2
Lx

L
h4u

2
3

2
3

2 L
Ph8cos

L
Ph8cos

L
h4P2q

L

hu
q

x

P P

Fig. 28.
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If the ends of a parabolic arc are not at 
the same level (Fig. 36), tangent T, 
parallel to  line S connecting the end of 
the arc, is drawn. If  the vertical 
distance of S and T is h, the previous 
formula still holds. 

Justification: Perform a linear change to the arc, S and T in such a way that 
the right end is lowered and the left end is kept where it is, until S and T
are horizontal. h remains the same. The second derivative of the curve also 
remains the same and q does not change. 

0,5L 0,5L

h
q

P

P

S

T

Fig. 29.
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Example. Beam in Fig. 37. L=20 m, h = 0,75 m, P = 1 MN.

Both q and its horizontal and vertical components qh and qv are depicted 
in Fig. 31. Although | max| = 9,9 , i.e. a considerable angle, (the depth of 
the beam is > L/20),  q and qv are almost equal. Close to the supports, qv
is clearly smaller than in the middle of the span but this is not significant 
when considering the deflections and stresses. The loads near to the 
supports have a minor effect on the deflections and bending stresses 
when compared with the effects of the loads in the middle of the span.

Fig. 30.

u=(0,0075 m-1)(x-L/2)2-0,025x+0,25m  

q = u’’ = 2P(0,0075 m-1)cos3 (15 kN/m)cos3
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From Fig. 31 it can be calcul-
ated that at a distance of 9 m 
from the beam end there is 
acting a horizontal force H = 
0,5x(9m)x(1,8 kN/m)= 8 kN 
due to qh. This is  0,8% of P. 
Elsewhere the effect of  qh is 
still smaller. Hence, it can 
totally be ignored.

Fig. 31.Table 1 ja Figs 32 – 33 present, what 
happens when the beam in Fig. 31 is 
made deeper and the curvature of the 
tendons is increased . When max = 20 , 
approximation of q with qv = qmax results 
in an error both in the moment distribution 
and horizontal force. In addition, the 
approximation overestimates the advant-
age of the prestressing force (is on the 
unsafe side)

max=10 deg

-4
-2
0
2
4
6
8

10
12
14
16

-20 -10 0 10 20

q
qv
qh 

x [m]

q [kN/m]

max h q v,min /q max H/P
deg mm
10 0,75 0,94 0,008
15 1,22 0,87 0,022
20 1,70 0,78 0,041

Table 1.
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max=20 deg
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Fig. 32.

Fig. 33.
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Conclusion: If is the angle between a parabolic curve and a line parallel 
to the beam and  ja -10 < < +10 ,  the transverse forces q may be 
assumed perpendicular to the beam and 

2L
Ph8Pa2q

P is the prestressing force, a the coefficient of the 2nd degree terms in 
the expression for the parabola, h the depth of the parabola (see Fig.  
29) and L the length of the parabola’s projection on the centroidal axis of 
the beams.  10 is no exact limit. Higher curvatures are acceptable in 
case measures are taken to eliminate the possible negative effects of 
the inaccurate approximation. 

When a parabolic arc is short when compared with its radius of curvature, 
it can be handled as a circle.  In such a case the equation for a circle 
x2+u2=r2 can be written in the form

242
2

r
x

2
11r...

r
x

42
1

r
x

2
11r)r/x(1ru

In other words, a circle can be approximated by a parabola and vice versa. 
. 
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When transverse forces q
in Fig 34.a are replaced 
by vertical forces qv q
as in Fig. 34.b, the 
resultant of the forces q is

Fig. 34.
is the change in the angle between the ends of the arc. 

PP
q

PP
q

r

s

r

a) b)

1 21q 2qP P

P
P

2Q = P 21Q = P 1

Fig. 35.

A short parabolic arc is a 
good approximation for a 
short circular arc. So,  the 
result above is also valid for a 
short parabolic arc. In fact, it 
follows from the equilibrium 
of forces that the resultant Q
is equal to P for a small 
(see Fig. 22) independently 
of  the shape of the curve.

Pr
r
PqssqQ v
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Above, the loads needed to maintain the tendon geometry and tension, 
have been presented. For this purpose, free body diagrams for the tendon 
have been presented. Vice versa, the concrete in a beam can be 
regarded as a free body loaded by the counterforces of the forces acting 
on the tendons. The following rules follow when 
- P is the tendon force  
- is the inclination angle of the tendon and the change in angle , 
- L is the length of the horizontal projection of te tendon
- h is the height of a parabola according to Fig.  29.

Loads on concrete due to shallow tendon geometry

1. A horizontal force Pcos and a vertical force Psin will develop due 
to the anchors
2. Straight tendons create no transverse force between the anchors.
3. A change in the inclination creates a force Q = P which can be 
considered perpendicular to the centroidal axis of the beam.
4. A parabolic arc of the form  u=ax2+bx+c creates a transverse force   
q = 2Pa = 8Ph/L2 per length unit.
5. A circular arc which is short in relation to the radius of curvature r, 
creates a transverse force q = P/r per unit length.
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Fig. 36. a) Beam. b) Concrete as free body. c) Mechanical model.

Example. For the concrete component of the beam  in Fig. 36.a, the free 
body diagram in Fig. 36.b and mechanical model in Fig. 36.c are obtained. 
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The stresses and strains of the concrete due to the prestressing force 
may now be calculated as for any continuous beam subjected to 
transverse and longitudinal loads as well as couples at the ends. 

The stresses and strains due to other loads are calculated separately 
and superimposed to the stresses and strains due the prestressing 
force. 

Note 1. When loaded by prestressing force and self weight (all loads for 
unbonded tendons), it would be most accurate to use the net concrete 
section properties (Ac, Ic). For loads applied after grouting, the transformed 
section properties would be the best (Am, Im). In English speaking countries 
the gross section properties (Abr, Ibr) are the most likely to be used in all 
cases. This simplifies the calculations. Furthermore, the error due to this 
simplification is quite small and normally results in a conservative design. 
The net section properties suit particularly well for the preliminary design.

Note 2. In the preliminary design, the negative curvatures at the 
intermediate supports may be ignored. The tendons may be modelled as 
those with  a finite change in inclination at the supports, see Fig.  37. 
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Fig. 37. Simplification of Fig. 36 for preliminary design.
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2q

a)
1e

1Q

2Q

4q

PP

pp-akseli

1M 2M
c)

3Q

Example. (Lin@Burns) Consider the beam shown in  Fig. 38. Calcul-
ate the deflections due to the prestressing force P and self weight g
immediately after prestressing. Data:

Ec = 28 GPa  (elasticity modulus of concrete)
p0 = 965 MPa (initial prestress)

Ap = 780 mm2 (cross-sectional area of tendon)
g = 3,25 kN/m (self weight)

We get:

48

3

mm10278,2
12

450300I

kN7,752N780965P

Centroidal axis 
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P
0M

b)

200

450

300
10 000

100

q

g
0M

P

a)

Fig. 38. a) Beam. b) Mechanical model.

kN7,752
)mm780()MPa965(P 2

mm 150h

The height of the parabola 

Uniform. load due to P: m/kN03,9
m)(10 

mm 150kN7,7528
L
Ph8q 22

Deflection due to q and g: 

kNm82,18
)mm 25()kN7,752(M0

mm 8,11
)mm10(2,27828GPa)(384

)m10()m/kN03,9m/kN25,3(5
EI

L)qg(
384

5w 48

44

gq

Deflection due to M0: mm 7,3
)mm10(2,27828GPa)(8

)m10)(m/kN82,18(
EI

LM
8
1w 48

22
0

M0

Net deflection:   w = -11,8 mm + 3,7 mm = - 8,1 mm
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Load balancing (Lin)

If the prestressing force P and the tendon geometry are properly chosen, 
the transverse forces due to P balance the transverse outer loads. 
Similarly, the outer couples (point moments) at the ends of the beam may 
sometimes be balanced with countermoments created by eccentric  
anchors. This is called load balancing. 

In perfect load balancing the beam remains straight and it is only 
subjected to axial compression. 

Example. In the beam of Fig. 38 no uniformly distributed load can be 
perfectly balanced because no such load can eliminate the effect of the 
end moments. 

Example. In the beam of Fig. 39 , the end moments are equal to 0. Find 
the uniformly distributed load g balanced by the tendon. 
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Fig. 39. a) Beam. b) Actions, due to P, on the 
concrete. c) All actions on the concrete.

Fig. 39.a 

Psin( 0) = 0,5qL

q = 8Ph/L2

h = 125 mm

Fig. 39.c when  g = 
q all vertical forces 
are balanced:

225

450

300
L =10 000

100
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q

g

P P

q

0

Pcos( 0)

Psin( 0)

Pcos( 0)
Psin( 0)

0,5gL

b)

c)

Fig. 39.b 

q = 8Ph/L2 

m/kN53,7
)m10(

)mm125()kN7,752(8qg 2

This exceeds considerably the self weight 3,25 kN/m. 
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All previous rules concerning the interpretation of the transverse forces 
due to P as transverse outer loads can be inverted in such a way that if a 
a transverse load distribution is needed to maintain a certain tendon 
force P and tendon geometry, the same load distribution is balanced by 
the same P and tendon geometry. For example:  

Point load F (Fig. 40.b):  P and change of inclination are chosen in 
such a way that P = F

Uniformly distributed load p (Fig. 40.a): P ja height of parabola h are 
chosen in such a way that 8Ph/L2 = p

End moment M:  P and vertical position of the anchor ya are chosen in 
such a way that

Pya = M

Vertical load F at the end of cantilever (Fig. 40.d): a straight tendon with 
such a P and are chosen that, the vertical component Psin of anchor 
force  balances the effects of F.
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Fig. 40. The dot-and-dash line tells the position of the centroidal axis.

Condition for load balancing:
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b)

c)

b)

d)

Note: When the vertical support is missing, the vertical component of 
the anchor force must not be ignored!
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Fig. 41. 

Fig, 41 shows, that even in simple cantilevered beams there may be  
additional conditions which make the balancing of a uniformly 
distributed load difficult. E.g. in Fig. 41.a the effective use of a 
rectangle beam would mean that  h1 = h2 L1 = L/80,5

Conditions for load balancing:
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b)
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A continuous beam shown in Fig. 42.a could be load balanced with the 
black tendon anchored at the centroidal axis. This would mean that a half 
of the beam depth would be useless. When the tendon geometry is 
linearly transformed span by span as indicated with the red line, the 
depth of the beam can be reduced by 40% while the load balancing 
remains unchanged (Fig. 42.b).

Fig. 42. Continuous beam, short outer spans.

L 1L 1 L
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Fig. 43 illustrates a beam with equal spans, balanced for a uniformly 
distributed load. When the anchors are placed at the centroidal axis to 
eliminate end moments, the concrete cover at the bottom of the middle 
span becomes very thick and the effective depth smaller than in the outer 
spans. This effect is even more pronounced if the mid-span is shorter 
than the outer spans. 

h hh

LL L

q

Fig. 43. Continuous beam with equal spans.

In general, only the self weight and a part of the imposed load are 
balanced. Only such loads can be regarded as self weight which are 
active when the prestressing is applied.  Load balancing for major loads 
not acting when prestressing may damage the structure during the 
prestressing.
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The principles of load balancing can also be applied as follows:  
1. The external loads corresponding to the transverse tendon forces 

are determined
2. From the real external forces, those mentioned above are subtracted
3. Only the load difference is regarded as a load in the calculations

Example. Self weight of beam is 10 kN/m and imposed load 15 kN/m.

If the tendon force balances a tranverse load = 11 kN/m and the anchors 
are at the centroidal axis, calculate the bending moment and deflections 

- due to self weight and  prestressing force for the load 
10 -11 kN/m = -1  kN/m (upwards)

- due to self weight,  prestressing force and imposed load for the load 
10+15-11 kNm = 14 kN/m (downwards).

When calculating the stresses, those due to the bending moment are 
superimposed to the axial stresses  –P/A due to the prestressing force.
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Primary and secondary moment due to prestressing force

Fig. 44 illustrates the concepts. The beam is first detached from the inter-
mediate support. It deflects as shown in Fig. 44.b and the moment distribut-
ion is the one shown in Fig. 44.e. F denotes the transverse point forces due 
to P. Calculate the deflection  w1 at the intermediate support due to the 
primary moment. The support reaction due to P is denoted by R. Calculate 
the deflection w2 due to R. Solve  R from equation w1+w2 = 0 and superim-
pose the primary moment and the secondary moment due to R. The result
is shown in  Fig. 44.f.

As stated previously, in a statically determined beam, the moment due to 
the prestressing force P is MP = -PyP where yP is the y-coordinate of the 
centroidal axis of the tendon.

In a statically nondetermined beam, the deflections due to P cannot take 
place free because there are extra restraints. Therefore, P causes support 
reactions which must be taken into account when calculating MP. Formally.
the expression MP = MP1 + MP2 can be written where

MP1 = -PyP is the primary moment (due to P)
MP2 = MP-MP1 is the secondary moment (due to P).
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Fig. 44. a) Beam. b) Effect of primary moment. c) Effect of total moment. 
d) Transverse forces due to P. e) Primary moment. f) Secondary moment. g) 
Total moment.
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Fig. 45. Deflection of mid-span. 
a) From primary moment. b)  From secondary moment. 
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Easier: Determine the forces on the 
concrete (Fig 46). E.g. Rakentajain ka-
lenteri (or some other handook) gives : 

Intermediate support: MP = 0,188PL
Mid-span:                    MP = -0,156PL Kuva 46. Effect of P on the concrete.
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About losses of prestress

In this course, the losses of prestress mean
1. time-dependent redistribution of stresses in a prestressed cross-
section or between different parts of a prestressed structure or
2. effects occurring during tensioning of tendons which result in tendon 
forces smaller than the initial prestressing force P0.

It is typical that losses of prestress develop although the support 
conditions and loading were unchanged. The losses of prestress are 
caused e.g. by 
- creep and shrinkage of concrete
- creep and relaxation of steel 
- friction between tendon and duct in post-tensioned tendons
- slip of tendons during locking at anchors. 

According to some researchers, we should not talk about losses but 
redistribution of stresses. However, this is no good concept for losses 
due to friction and slip during locking.
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The calculation methods presented before give misleading results if the 
lossses of prestress are ignored. It is common to use the formulae in 
such a way that,  the initial prestressing force  P = P0 (initial prestresss

p = p0) is replaced by the reduced force  LP0 (reduced initial prestress 
L p0). It is a common practice to first evaluate the losses which are 

then used to calculate the stresses and strains of the concrete and 
steel. However, it is not always possible to avoid iteration.

The elastic deformation due to the release of the prestressing force 
(pretensioning) or due to the tensioning of the neighbouring tendons 
(post-tensioning) is regardes as a loss of prestress by some textbooks 
and designers. Let’s consider this in the view of a few examples.

Example. I. Pretensioned beam in Fig. 47. Previously (p. 22) it has been 
stated, that with the initial prestressing force P0

The difference  (1- L) reflects the relative losses of prestress.      The 
long-term losses are typically of the order of 20% for pretensioned 
tendons. The losses for post-tensioned tendons may be essentially 
greater particularly in cylindrical shells or domes.
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the stress of the concrete ( c,P) and steel  ( p,P) are 
obtained from

(concrete) 

(steel) 

The stresses are explicit functions of P0 and the 
concept of elastic loss is useless.

Fig. 47.

If Am and Im in the expressions above are replaced by net values Ac and Ic
or gross values Abr and Ibr t, the elastic losses should be taken into account 
by reducing P according to the elastic deformation. This is what some 
engineers do, but there is not much sense in doing so because the easiest 
way to calculate the deformations is by using the transformed section 
properties  Am and Im .

yhpp

ypp

0
0p A

P

So called ”elastic losses” are given by p,P - p0 , which is equal to the 
change in steel stress due to an eccentric normal force equal to P0.
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In the same way, when the net or gross values are used to evaluate the 
effects of the external loads, one should take into account the effects of the 
external loads on the tendon force. This is, however, never done. Again, it 
would be easier to use the transformed values Am and Im from the very 
beginning, but using them would mean that the benefits of the simplification 
would disappear. To conclude, if Am and Im are replaced by Ac and Ic or Abr
and Ibr to simplify the calculations, it is preferable to forget the elastic losses 
an accept the error due to this simplification.

Conclusions for a pretensioned beam:
1. The stress in the tendons changes due to the release of the prestressing 
force, but this elastic deformation does not mean  loss of prestress. 
2. To calculate the stresses accurately, use the transformed section 
characteristics.
3. To calculate the stresses less accurately but on the safe side, use the net 
or gross sectional characteristics.The elastic deformation is not regarded as 
a loss of prestress. The error du to this simplification is accepted. 
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Example. II. Post-tensioned beam. 

Case 1: All tendons are tensioned simultaneously.

The elastic deformation takes place before the force in the tendons is 
measured. Therefore, it does not mean a loss of prestress. 

To calculate the effects of the prestressing force accurately, use the net 
values of sectional characteristics, but the gross values also give results 
that are fairly accurate.  .    

Case 2: Tensioning in stages.

If the tendons are tensioned gradually in such a way that the increase 
in tendon forces balance the increase in self weight and the stresses 
in the beam are mainly axial compression, the change in the tendon 
force may be calculated assuming that the beam is a composite 
member, i.e. a compressed strut, which comprises the concrete, the 
previously tensioned tendons and the grouted ducts (if such ducts 
exist). At each stage, the effective cross-section at that stage is used.
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The transformed sectional characteristics of this cross-section, are used 
when calculating the additional effects due to the tensioning at this stage

The response of the structure is determined by 
the average tendon force. If there are n stages, 
it is enough to calculate the change in tendon 
force in tendon number n/2 due to the 
tensioning of tendon number n/2+1. This 
change, multiplied by n(n-1)/2, is  the change 
in the total tendon force. 

Fig. 48 illustrates a case in which four 
identical ltendons are post-tensioned in four 
stages. The black columns represent the 
tendon force P due to the tensioning (= P0), 
the red ones (=Pi) the final value afer elastic 
deformations. The tensioning reduces the 
tendon force only in the previously tensioned 
tendons. 

Fig. 48.
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The final target is to find out the average prestressing force, the anchor 
forces of which, together with the transverse forces, affect the concrete 
free body. It would be most logical to use the net sections to calculate 
the effects of the tendon force,  but the gain in accuracy due to this 
choice is small when compared with the gain in simplicity in calculations 
when the gross sections are used. Therefore, it is common to use the 
gross sections when the demands for the accuracy are not too tight.

This rule is applied to the case shown in Fig. 48 (n = 4). The tensioning of 
the 3rd tendon reduces the force in the 2nd  tendon by one white box. 
Consequently, the total change in tendon force is 4x(4-1)/2 = 6 white 
boxes. This can also be seen in Fig. 48. The white boxes  become smaller 
when the tensioning propagates because the axial stiffness increases with 
increasing number of effective tendons. The error due to the assumption 
that all white boxes are equal is small and can be ignored. 

How to calculate the effect of one tensioning stage to the tendons 
tensioned in the previous stages? The transformed section characteristics 
can be used, but applying the gross characteristics does not result in major 
errors, either.
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Conclusions for post-tensioned beams:
1. It is a matter of taste, whether the elastic deformation of a tendon due 
to tensioning of other tendons is regarded as a loss of prestress. In any 
case, this deformation has to be taken into account when calculating the 
effects of the prestressing force.
2. When calculating the effects of the prestressing, the (net or) gross 
sectional characteristics are used for the effects of tendons tensioned in 
the first stage, and approximatively also for effects of tendons tensioned 
in the later stages. For later stages it would be accurate to take into 
account the tendons and possible grouting of ducts in the previous 
stages. For the external loads the gross section can be applied to get an 
approximation of the structural response. If their are high demands for the 
accuracy, transformed sections should be applied. 
3. If the beam remains straight or almost straight during the tensioning 
(load-balancing), the elastic deformation may be evaluated assuming that 
there is no bending.

General remark:
In the ultimate limit state of bending the losses of prestress play a minor 
role.

Rak-43.3110   2010  M. Pajari 64

The total strain of concrete at time t can be given in the form of

)t()t()t()t()t( Tccccscec

)t(ce

)t(cs

)t(cc

)t(Tc

Here is

TT

elastic strain (e elastic),

shrinkage (s shrinkage),

creep (c creep),
,  strain due to temperature change  t , 

T temperature coefficient.

The shrinkage and temperature change affect the stresses of the concrete 
only if they cannot take place freely. Restraints may  be provided by 
supports, reinforcement etc. 

The temperature changes are not considered in this course, but the 
calculation methods are similar to those used for the shrinkage. 

Total strain of concrete
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Shrinkage  (Fig. 49)

Chemical reactions in the concrete 
during hardening result in volume 
change. In a beam, a longitudinal 
deformation ca (autogenous 
shrinkage) is observed. 

tctc0 0

Fig. 49. Shrinkage.

Another component of shrinkage is drying shrinkage cd . The total 
shrinkage of the concrete is 

The rate of shrinkage reduces with time. Both the rate of shrinkage and 
the long-term shrinkage depend on the concrete itself, ambient relative 
humidity, geometry of the member etc. 

)t()t()t( cdcacs
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EC2 (EN 1992-1-1):

3
0s

s
0,cdhsds0,cdhscd

h04,0)tt(
ttk)t,t(k)t,t(

Here is
kh coefficient, depends on parameter h0 (mm), tabulated data,

cd,0 final value of drying shrinkage, expressions given in various codes,
ts age of concrete when hardening begins (or curing ends),
h0 notional thickness = 2Ac /u, where Ac is the area of concrete 

section and ja u the perimeter exposed to drying (see Fig. 50).

t

H

t
t

t
)Ht(2

tH2h0

2
t

t4
t2h

2

0

Fig. 50. 

EN 1992-1-1:  autogenous shrinkage is 
obtained from 

5,0
ca

ascaca

t2,0exp1)(
)t()()t(

ca( ) is the final value of autogenous 
shrinkage, calculated from 

MPa10fMPa105,2)( ck
16

ca

[t],[ts] = 1 d
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RH ( / )
Betoni 20 40 60 80 90 100
C20/25 0,62 0,58 0,49 0,30 0,17 0,00

C40/45 0,48 0,46 0,38 0,24 0,13 0,00
C60/75 0,38 0,36 0,30 0,19 0,10 0,00
C80/95 0,30 0,28 0,24 0,15 0,08 0,00
C90/105 0,27 0,25 0,21 0,13 0,07 0,00

EC 1992-1-1. cd,0 for concrete with N-class cement 

h0 kh
mm
100 1,00
200 0,85
300 0,75
500 0,70

EN 1992-1-1.  k,h - h0 -relationship.

E.g. Notation C40/45:

Cylinder strength = 40 MPa
Cube strength = 45 MPa
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Example. Beam hxb = 600x300 mm2 h0 = 200 mm and kh = 0,85
Concrete C50/60 fck = 50 MPa ca( ) = 0,0001
Cement N ja relative humidity 50 %  cd,0 = 0,00037
Curing for 2 days, ts = 2 d.

We obtain (Fig. 51):
cd( ) = 0,00032
cs( ) = ca( )+ cd( )

= 0,0001+0,00032
= 0,00042

This corresponds to loss of 
prestress 81 MPa (6 %), if 
Ep = 195 GPa and initial 
prestress   p0 = 1300 MPa

-0,05

-0,04

-0,03

-0,02

-0,01

0
1 10 100 1000 10000 100000

t [d]
ep

s
[%

] epsca

epscd

epscs

Fig. 51. 
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. Here (t,t0) is the

Creep of concrete

When concrete is loaded at time t0, the instantaneous 
stress  c(t0) corresponds to elastic strain

)t(E
)t()t(

0c

0c
0ce

Elasticity modulus Ec(t0) (Fig. 52) depends on the 
stress but it is assumed to be constant in 
calculations. 

Let’s assume that the concrete can freely deform in constant temperature. 
When the stress ( 0) is kept constant until t > t0 , a deformation 

)t()t,t()t( 0ce0cc

.0)t()t()t()t( csceccc

It is called creep . Let’s denote 
creep coefficient which, among many other things, depends both on the 
age of the concrete and time of loading.  It is the ratio of the creep to the 
elastic deformation ce(t0), see Fig. 53. 

Fig. 52.

c

c(t0)Slope
= Ec(t0)

(t0)
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The strain of concret at time t is

Fig. 53. Elastic strain ce and and 
creep ce.

)t(
)t(E

)t,t(1)t()t()t()t()t( cs
0c

0
0cecscc0cec

If is known, the creep and elastic 
deformation can be analysed as a 
deformation of an elastic material 
with elasticity modulus  Ec/(1+ ).

The formulae presented before are 
useful, if is independent of the stress. 
In such a case the creep is called 
linear. 

The assumption of linearity is accurate enough if the long-term stress in 
the concrete is less than half of the strength at loading. The limit given in 
EC2 is 45% of the mean compression strength at loading age.  This is 
often the case in prestressed structures.

tctc
00

ce(t0)
ce(t0)

t0
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EC2-1-1, General rules and rules for buildings, informative annex, gives 
complicated formulae for the development of the creep. EC2-2-1, 
Bridges, gives different formulae. The creep resulting from these 
formulae differ considerably even for the same concrete.

Because the creep formulae are presented in informative annexes, it is  
possible to apply other creep formulae as well, e.g. those of the Finnish 
B4 or CEB-FIP Model Code 1990 (MC-90). 

When the concrete is loaded by compressive normal stress c at time t0, 
the creep of concrete at time t = is

c

c
00cc E
)t,()t,(

EC2 gives a simple graphical method for determining the final value 
( ,t0), see Figs 54 and 55. Here corresponds to roughly 70 years.
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The final value of creep acording to EC2-1-1:

t0 age at loading (d) E.g. t0 = 4 d 
S, N, R types of cement cement R
h0 notional thickness h0 = 200 mm

Fig. 54. 
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Fig. 55. 

Fig. 56. 
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Fig. 57. Relaxation.

t

p p

00
t

Relaxation of prestressing steel
The gradual reduction of the stress during 
constant strain is called relaxation, when 
the ambient temperature and other con-
ditions of the environment are kept con-
stant. The relaxation of the prestressing 
steel is important because it reduces the 
beneficial effects of the initial prestress.  

The relaxation increases rapidly when the stress is close to the yield . It is 
given as  1000 which is the loss of prestress [in %] in a 1000 h test in which 
the initial prestress is 70% of the measured ultimate strength of the steel. 
EC2 divides the prestressing steel in three classes based on the 
relaxation:

Class 1   8 %
Class 2   2,5 %
Class 3   4 %

1000
Wires and strands belong to Class 1 or Class 2, bars 
to Class 3. For each Class, there is an expression 
from which the relaxation pr = pr (t, pi ) can be 
calculated.   pi is the initial prestress. 
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)1(75,0
1,9

1000
5

pi

pr

h1000
te1066,0

)1(75,0
7,6

1000
5

pi

pr

h1000
te1039,5

)1(75,0
8

1000
5

pi

pr

h1000
te1098,1

Example. Steel St 1640/1860 belongs to Class 2. The nominal strength 
fpk is 1860 and the actual strength (fp ) 1930 MPa. The relaxation test is 
carried out with initial stress 0,70x 1930 = 1351 MPa and 1000 is 
obtained. The steel is tensioned to 1351 MPa = 1351/1860 = 0,726 

in 1000 h:

Class 1

Class 2

Class 3

1000
726,01,9

1000
5pr 00488,0e1066,0

MPa1351

1000
pr 01,0

MPa1351
the relaxation test gave 

because 

= pi /fpk , where  fpk is the nominal (failure) strength of the steel (should 
be characteristic strength but such a strength is normally not determined).

Obs. If 1000. = 
k %,  replace  

1000 with k in the 
expression.

Rak-43.3110   2010  M. Pajari 76

The relaxation formulae of EC2 are easy to use but clearly incorrect.  Fig. 62 
ilustrates the increase of relaxation with time when 1000 = 1,3 %. In 57 years, 
the relaxation is 3,5 times the 1000 h relaxation. This ratio is of the same 
order as that obtained using other methods. It is likely that the relaxation 
formulae of EC2 can be used in case they are calibrated in such a way that 
they give the 1000 h relaxation  1000 at t = 1000 h. 

Fig. 58. Relaxation vs. time in Class 2 
according to EC2.

roo1000 = 1,3 %

-2,5
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]

It would also be more consist-
ent to replace 10-5 by 10-3. 
Then 1000 could be used as 
such, e.g. as 0,013 or as 1,3%. 

The relaxation is very 
sensitive to elevated 
temperature. E.g. heat 
treatment enhances the 
relaxation. Instructions for this 
are given e.g. in EC2.
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Frictional and anchorage losses in posttensioned structures
Without friction between the tendon and duct the tendon force during 
tensioning would be constant between the active and passive anchor. Due 
to the friction, the situation shown in Fig. 59 results.  A small change in 
angle = d (Fig. 59.b) causes a transverse force q = P/r per unit length. 
The corresponding friction force is q = P/r and the change in P in 
interval ds = rd is dP = - (P/r)rd = - Pd . We obtain (C is integration 
constant)

Pd/dP )C(Pln C)C( eeeP

Fig. 59. Circular tendon. a) Transverse 
force. b) Friction force. 

P(0) = P0

ePP 0

or
ePP 0

where is the absolute 
value of the change in 
inclination angle or 

12

P0

a)

q

b)

Active end

P0 P0+ P

s

q( )

ds

r rP( ) d

2

1
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A corresponding relatiohship can be deduced for an arch of parabola 
u = ax2+bx +c using the close relationship of a parabola and circle in 
case the curvature is small in comparison with the arc length.  At x1 and
x2 (Fig. 60) the inclination angles are 1 ja 2. Approximatively 

bax2)x(u)tan( ii
'

ii

xa2)xx(a2 1212 u
1

2

x2 xx1

u=ax2+bx+c

x
x

u
x

x/2 x/2

h

u=[4h/( x)2]x2

Fig. 60. 
In the case of Fig. 61, the change in angle is  

Denoting i , i.e. the sum of changes in 
inclination angles   i (absolute values) 
within distance x from the active anchor, the 
reduced force at distance x equals

x
h8x

x
h42xa2 2

ePP 0

Fig. 61. 
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dP = -KPdx, where K is the proportionality coefficient. In general, 
notation  K = k, is adopted. Here k is called  aaltoisuusluku per unit 
length. As for the angle change, we obtain

kx
0x ePP

The ducts are pointwise supported and deflect between the supports 
during concreting and before it. For this reason, the ducts aimed to be 
straight are never perfectly straight and friction between the tendon and 
duct is generated. This length effect is taken into account in such a way 
that friction force due to it is assumed to be proportional to the distance 
x from the active anchor. In more detail, the change dP in the 
tensioning force within a distance dx is proportional to the dx and P or

)kx(
0

kx
0 ePeePP

The losses due to the angle change ( P ) and length effect ( Px ) are 
combined in such a way that the tendon force, reduced by the angle 
change, is still reduced by the length effect.  This results in

)1e(PPPP )kx(
00

and k depend on the post-tension-
ing system. They have been 
specified for each manufacturer. See 
typical values overleaf. 
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Typical values of and  k. See Leskelä (BY210) .

(You may skip this page)
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When the tendon is locked and the actuator force 
is removed, there is a small slip between the 
tendon and the anchor. Due to this, the tendon 
force at the active end reduces, see Fig. 62. This 
is called locking or anchorage loss. It is a local 
effect in  a curved tendon. Due to the friction, the 
locking loss gradually fades  as the distance to 
the anchor increases. The magnitude of the 
locking loss is specific for each post-tensioning 
system. The anchorage loss can be reduced by 
retensioning and shimming in certain systems.

Fig. 62. 

About calculation of losses

Above, the losses have been treated as effects which are independent of 
each other. The loads have been simplified. In the real world, the ambient 
temperature and humidity, the time dependence of the loads and the 
actual material properties are unknown, the reinforcement and boundary 
conditions affect the deformations etc. Therefore, it does not pay to apply 
too sophisticated methods but use simplified calculation rules. What is an 
acceptable simplification, varies from case to case. 

Distance to

P0

active end

P

0
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On p. 70 it has been stated that  the sum of the elastic strain and 
creep statrted at time t0 is

Linearity of creep the 
strain due to stress change 

c( )  at > t0 can be 
superimposed to the initial 
strain.

If the stress changes step-
by-step, the strains due to 
the individual changes are 
superimposed and we get Fig. 63. 

tctc
00

ce(t0)

t0

c(t0)

c( )

ce(t0)

ce( )

ce( )

(t,t0)

( ,t0)
a)  Jännitys b)  Venymä
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)t()(d
)(E

),t(1
)t(E

)t,t(1)t()t( csc

)t(

)t( c0c

0
0cc

c

0c

Here d c(t) denotes a small change in concrete stress at time (t0 < < t). 
The integration can be replaced by addition, in which the stress varies 
stepwise. Another and simpler way is to think that the sum of stress 
changes in time interval  (t0,t) takes place at t0, but because actually a part 
of the change takes place later, the creep coefficient is reduced by a factor 

. In this way we obtain

)t()t(
)t(E

)t,t(1
)t(E

)t,t(1)t()t( csc
0c

0

0c

0
0cc

is the age-adjusted elasticity modulus of the concrete.)t,t(1
)t(E

0

0c

The simplification follows from the fact that, does not vary too much, 
and e.g. EC2 gives a constant value = 0,8.

If the stress varies continuously, the sum is replaced by an integral. 
When the shrinkage is added, the total strain is obtained:
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pr

c,QP   change of concrete stress due to prestressing force P and 
external forces Q (= stress) at time  t0

p,c+s+r   change of tendon stress due to creep, shrinkage and relaxation 
during period (t0,t), AP p,c+s+r. =  Pc+s+r  represents the 
corresponding change in  tendon force

rscppp
cc

p
cc

Ay
IA

Cy
IA ,

22 1111
c,c+s+r =

relaxation during  period (t0,t), corresponding to initial prestress

pr actual relaxation during  period (t0,t). Estimate: pr = 0,8 pr

The change in concrete compression resultant relaxation during period (t0,t):
C = - Pc+s+r. = -AP p,c+s+r.

The change of concrete stress on the centroidal axis of the tendons is 

Consider next the effect of simultaneous creep, shrinkage and relaxation 
on the losses of prestress in posttensioned tendons. Notation:
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rsc,pp
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p

cc0c

0
QP.c
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0
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prrsc,p Ay
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)t(E
)t,t(1

)t(E
)t,t(

E

Set next the change of steel strain at the centroid of the tendons = the 
change in concrete strain at the same level in time interval (t0,t). Take into 
account that the change in the concrete compressive force is equal but 
opposite to Pc+s+r. , the change of tendon force due to the creep, shrinkage 
and relaxation.  pr , the stress change due to the relaxation, does not 
change the strain of the tendon. 

Solve c+s+r.: 
)t,t(1y

I
A1

A
A

)t(E
E

1

)t,t(
)t(E

E
E

0
2
p

c

c

c

p

0c

p

QP.c0
0c

p
prpcs

rsc,p

Estimate that r = 0,8 pr ja  = 0,8. Denote Ec(t0) = Ecm. Eq. (5.46) of 
EC2 is obtained:

)t,t(8,01y
I
A1

A
A

E
E

1

)t,t(
E
E

8,0E
AAP

0
2
p

c

c

c

p

cm

p

QP.c0
cm

p
prpcs

prsc,pprsc
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The symbols have the following meaning:
cs = cs(t,t0) shrinkage in time interval (t,t0) ,

r relaxation loss assuming constant strain in time interval (t,t0),
c,QP stress of concrete due to prestressing, permanent loads and 

long-term share of imposed loads at the centroid of the tendons 
at time  t0,

Ap Cross-sectional area of tendons,
Ac net (or gross) area of concrete section, 
Ic second moment of area of concrete section (netor gross value),
yp y-coordinate of centroid of tendons (origin at centroid of 

concrete),
Ep elasticity modulus of prestressed steel,
Ecm = Ec(t0), elasticity modulus of concrete, see Fig. 56,
t0 age of concrete at first loading,

(t,t0) creep coefficient.

The formula suits best for post-tensioned structures in which the shrinkage 
before the tensioning at t0 does not affect. This is why it is enouh to 
consider the shrinkage cs = cs(t,t0):n and the shrinkage cs(0,t0) can be 
ignored. In the same way, there is no relaxation before  t0.
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For pretensioned tendons the shrinkage and relaxation in time interval  
(0,t0 ) must be added to the losses. 

The formula of EC2 is most accurate when all long-term loads (tendon force, 
self weight and long-term imposed loads) start simultaneously. This is the 
case e.g. when the loads during execution are replaced by service loads of 
the same magnitude.

If this is not the case, but an additional load Qk is applied at  time tk > t0, the 
change due to the creep caused by this load has to be taken into account. In 
other words,

)t,t(8,01y
I
A1

A
A

E
E

1

)t,t(
E
E

AP

k
2
p

c

c

c

p

cm

p

Qk.ck
cm

p

pkrsc

has to be added to Pc+s+r calculated above.
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1160
132,5

132,518535

Evaluate the importance of the 
denominator in the formula of EC2 
for the hollow core slab shown in 
Fig. 64 with almost maximum 
prestress. Ap = 10x93 mm2, Ecm = 
35 GPa, Ep = 190 GPa, Ac = 
173000 mm2, Ic = 1,74x109 mm4, 

( ,t0) = 3. Result:

Fig. 64. 

Denominator = 1,10. 

In other words: If the denominator is replaced by 1,0, the final losses are 
overestimated at most by 10% and the losses at younger ages less. 
Therefore, it is common to calculate an approximative value for the creep, 
shrinkage and relaxation losses from 

cm

QP.c
0ppr0csprsc,p E

)t,t(E8,0)t,t(E

cm

Qk.c
kpkrsc,p E

)t,t(E

The effect of an optional load  Qk, applied at a later stage tk

is added. These simplifications are less accurate, if the amount of non-
prestressed steel is considerable.
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If the centroids of the prestressed and reinforced reinforcement coincide, 
the following expression is obtained (not deduced, see e.g. Ghali & Favre: 
Concrete structures: Stresses and deformations. Chapman & Hall. p. 56 -
57)

nspr

0
2
p

c

c

c

st

cm

st

QP.c0
cm

st
stpprstcsst

st

p
rsc A8,0

)t,t(8,01y
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E
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E
EAA8,0EA

A
A

P

Load Qk, applied at a later stage tk, gives rise to a change

where 
Ans is the cross-sectional area of the non-prestressed steel
Ast = Ans+Ap
Est is a ”compromise” value of easticity modulus between reinforcing 

and prestressing steel, e.g. 195 GPa or 200 GPa.
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If the slab in  Fig. 63 is provided with additional non-prestressed reinforce-
ment, the amount of which is Anp = Ap, the denominator in the brackets 
equals 1,20. If this is replaced by 1,0, the reduced tendon force is

Stresses and strains in a statically determined beam taking 
into account the losses

QP.c0
cm

st
pprstcsprsc )t,t(

E
EA8,0EAP

In this case, the resulting error in P is < 20 %.

When there is steel in a concrete section, the location of the 
centroidal axis varies with increasing creep. Keeping the reference 
axis constant facilitates the calculation of the geometric cross-
sectional characteristics. In Fig. 64, the origin of y-coordinate is on an 
arbitrary reference axis, the distance of which from the bottom fibre is  
href. The axial force N and bending moment M are also calculated with 
respect to this reference axis.

Rak-43.3110   2010  M. Pajari 91

Fig. 65. 
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Using the axial strain  0  at the 
reference axis and the curvature the 
axial strain and stress k can be 
expressed as

y
N

M

h ref 0

(ES) = 0 only when the reference axis and  the centroidal axis coincide. Such 
a choice is not useful because the location of the centroidal axis varies with 
the creep. 
Using the transformed cross-sectional characteristics ( E0 = Ec , in a 
composite beam E0 is the E-modulus of some concrete part), and adopting 
matrix notation, the previous equations can be expressed in the form
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Here nk = Ek / Ec , ypp,k is the y-coordinate of the centroid of part k and
Sk = ypp,kAk.

k A k
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kkm AnA

Stress and strain at time t0 immediately after prestressing
Combine first the outer normal force N and  moment M with the 
actions due to the tendon forces Pj to get the load vector

j,pj

j

ekv

ekv

yPM
PN

M
N yp,j is the y-coordinate of tendon j 
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If the reference axis and the centroidal axis coincide, Sm = 0, and the well-
known expression follows: 

m

ekv
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ekv
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00
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)t(
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The parts of the section to be included in  Am ja Im.depend on the situation. 
E.g. for a post-tensioned beam, the strains due to the tensioning  should be 
calculated without prestressed steel and grout inside the ducts, but the 
reinforcing (non-prestressed) steel is included. In pretensioned beams the 
prestressing steel should be included from the very beginning.
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We obtain

y)t()t()t(E)t(
y)t()t()t(

0000c0c

0000c

The strain c and stress c of the concrete depend on y as follows:
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The corresponding stresses of the steel are: 

Non-prestressed: 

Pretensioned (initial prestress = p0): 

y)t()t(E)t( 000s0s

y)t()t(E)t( 000p0p0p

Post-tensioned (initial prestress = p0): 0p0p )t(

Note. Neither the relaxation loss of a pretensioned  tendon nor the friction 
or locking loss of post-tensioned tendon are included above. They must 
be subtracted from the initial prestress po.

Changes in strain and stress in time interval (t0,t) 

Assume that  0(t0) ja (t0) are known. Assume also that the strain increment  
and curvature increment in time interval (t0,t) are first prevented by a normal 
force  N and moment  M placed at the reference axis. Next, the 
composite section is loaded by  - N ja  – M , which balances the effects of 

N and moment  M. It follows that
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Here Ec´ is the age-adjusted elasticity modulus or 
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)t(EE
0

0c'
c

All cross-sectional characteristics, i.e. Am, Sm ja Im are calculated using   
Ec´ as the reference modulus. Notation:

shrM
N

creM
N

relM
Nprevents the

shrinkage
prevents
the creep

prevents the
relaxation

relcreshr M
N

M
N

M
N

M
N

If the creep could develop freely in time interval (t0,t), 0 ja would 
change by (t,t0) 0(t0) ja (t,t0) (t0). The force and moment to prevent 
this are solved from equation

n

1k k0

00

cc

cc'
c

cre )t(
)t(

IS
SA

E
M
N Subscript k refers to part k of the 

section and n is the total number 
of the parts. Ec´ ja may be 
different in different parts.
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The cross-sectional characteristics are calculated for the net concrete 
section with respect to the reference axis. Ec´ ja are the age-adjusted 
elasticity modulus and creep coefficient for part k, respectively:   

k0 )t,t(
k0

k0c'
c )t,t(1

)t(E
E

n

1k kc

c
cs

'
c

shr S
A

E
M
N

m

1q qprpp

prp

rel
yA

A
M
N

Force and moment preventing the shrinkage: 

cs is the free shrinkage of part k .

The addition is extended over all tendon 
layers q, the number of which is m.          

pr

prrpr

is the reduced relaxation, Ap the cross-sectional area and yp the y-
coordinate in layer q. The reduced relaxation is calculated from

pr is the relaxation correponding to the initial prestress and r
reduction coefficient, the value of which may be taken as 0,8. More 
specific values can be found in the textbook of  Ghali & Favre.

Force and moment preventing the relaxation: 
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The strain increment in time interval (t0,t) is = 0 + y The total 
strain is obtained from 

the stress increment in time interval (t0,t) is

)y)(t,t(E 00
'
ckrestrainedc

)y(E s0ss

)y(E p0pprp

concrete, part k

non-prestressed steel, vertical position ys

prestressing steel, vertical position yp

Simplification for a simple non-composite beam
Use the gross values of the cross-sectional characteristics the 
reducing effect of the steel on the long-term deformations is ignored.  

cs0c00
'
ckrestrained )t,t()t,t()t,t(E stress which prevents the creep 

and shrinkage

)t(y)t()t( 000
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Effect of the creep in time interval  (t0,t):

Effect of the shrinkage:

Effect of the relaxation  (gross values the section characteristics are 
time independent reference axis = centroidal axis is a reasonable 
choice  S = 0 simplified expressions):
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With these assumptions (the steel is ignored, statically determined beam) 
the creep and the shrinkage do not change directly the stress of the 
concrete because the forces preventing them and their counterforces act 
on the same gross cross-section. 
The relaxation changes the tendon force by Ap , which results in a 
concrete stress increment

)y
I

y
A
1(A p

prpc

pr

In the same way, the creep and shrinkage affect the concrete stresses 
indirectly by changing the prestress in te tendon by 

The increment of the tendon force due to the creep, shrinkage and 
relaxation is  

cspshr,p E )t(E
)t,t(E)y(E

0c

0c
pcrepcre,0pcre,p

)(AAP prshr,pcre,pppprsc

Hence, the creep, shrinkage and relaxation give rise to a concrete stress 
increment 

)y
I

y
A
1(A p

ppc
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Note 1. The simplified formulae given above can be used for statically 
determined beams.
Note. 2. In general, the initial stress is not constant along the axis of the 
beam, and the losses vary from section to section. In ordinary cases the 
stress considerations can be restricted to certain critical sections, which  
facilitates the calculations.

The prestressing force and the self weight are permanent loads. For the 
varying loads (imposed loads), the design codes specify a factor which 
tells the long-term share of the load.  
For example, in Finland the long-term share of the residential load is 30 % 
and that of snow load either 20% or 50 % depending on, which load 
combination results in the critical action.

Calculation of long-term response, general aspects

When calculating the long-term effects, the long-term share of a load is 
assumed to be active from its application on without interruptions. 
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As soon as 0 and are known in each cross-section, the deflection 
increment in time interval (t0,t) can be calculated by integration from  ( w)’’
= - numerically It is also possible to load the beam by = M/(EI), and 
calculate the bending moment due to this load, which gives the deflection 
when the boundary conditions are properly chosen (Mohr’s analogy). The 
obtained deflection increment w is added to the deflection  w(t0) 
calculated at time t0.

To calculate the effects of loads at time t, the short-term loads are applied 
at that time and their momentary response (deflection, stress, strain etc.) 
is calculated without long-term effects. (These loads may have been 
effective several times before, but due to their momentary nature, their 
effects have recovered.) The short-term response calculated in this way is 
added to the long-term response which is calculated separately.

Instead of numerical integration, the well-known formulae for deflection 
calculation are to be preferred when they are available. For this, the 
different load types and loads activated at different times must be 
considered separately. 
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Example. Deflection of simple pretensioned I-beam
- Tendon force P, t0 = x d, share of long-term (LT) load 100 %
- Self weight of beam, t0 = x d, LT-share 100 %
- Self-weight of structures on beam, t0 = 1 kk, LT-share 100 %
- Imposed point load, t0 = 2 kk, LT-share 100%
- Ímposed uniform load, t0 = 6 kk(?), LT-share 30 %.

Deflection due to the tendon force is 
8
Lw

2
P

relcreshr M
N

M
N

M
N

M
N

When aiming at an accurate results, calculate first  0(t0) ja (t0) due to the 
prestressing force and other actions at time  t0 . Thereafter, solve due 
to long term deformations in time interval   (t0,t) as shown on pp. 95 – 96  
from expressions
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Simplified approach: Ignore the stiffening effect of steel on I and write for 
the curvature due to P

br
'
c

0rsc,ppp
0

br0c

0ppp
P IE

)t,t(yA
)t,t(1

I)t(E
)t(yA

This can still be simplified by replacing the age-adjusted modulus Ec’ by 
Ec(t0)/(1+ ):llä, which results in 

)1/(I)t(E
)t,t()t(yA

br0c

0rsc,p0ppp
P
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SI
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The deflection is obtained by integration of differential equation 
w” = -( (t0)+ ) or by using well-known expressions for different types of 
boundary conditions and loads.
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(Note. Instead of Ibr it would be more accurate to use Im, in such a way 
that in the denominator of the term representing the tendon force 
increment,  Im should be calculated using Ec’.

In a post-tensioned beam it would be more accurate to use Ic instead of  
Ibr at the time of tensioning and Im calculated using Ec’ for the tendon force 
increment.)
The deflection due to uniformly distributed load q is calculated applying  

EI
qL

384
5w

4

L is the span of the beam. Denote: q is the long-term share of q. The 
deflection due to q at time t is 

mc

4

q,0mc

4

q)1(qq I)t(E
qL)1(

384
5

)]t,t(1/[IE
qL

384
5www

t0,q is the age of the concrete when q is applied.
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The deflection due to a point load F is calculated by applying the 
general formulae for the point loads. E.g., if F is in the mid-span and its 
long-term share is F, the deflection is given by  

mc

3

F,0mc

3

F)1(FF I)t(E
FL)1(

48
1

)t,t(1/IE
FL

48
1www

Example. Post-tensioned rectangular beam

Fig. 66. The average transverse forces qi
due to the tendon forces span by span.

Due to the friction losses, 
the tendon force is greater  
at the active end (left end 
in Fig. 66) and so are also 
the transverse forces. 
However, to simplify the 
calculations, it is possible 
to assume a constant  
tendon force in each span. In a cantilevered span, the constant value 
should be representative to the value at support, between the supports the 
value should be representative to that in the mid-span. 

h1
h2

L 1L 1 L

Active end Passive end
q 3

q 1 q2

x
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It is also possible to apply the maximum or minimum tendon force to find 
out the limits for the deflection. 

Denote: P0,i is the tendon force representing each span at the time of 
prestressing and P0,i the corresponding loss in the time interval  (t0,t). 
Then the curvature due to P in each span i is

m
'
c

Pi,0

0Cc

Pi,0

m
'
c

P

0Cc

P
i,P IE

yP
)t,t(1/IE

yP
IE

)x(M
)t,t(1/IE

)x(M

To avoid calculation of each section separately, Im and Ic are usually 
replaced by Ibr:llä. Adopting still another approximation, i.e. replacing Ec´
by Ec/(1+ ):llä, we obtain an expression 

)t,t(1/IE
y)PP(

0brc

Pi,0i,0
i,P For parabolic tendons, yP is a second 

degree polynomial of x. Other parameters 
are assumed to be constant within in each 
span.
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Now the deflection w can be solved by integrating w’’ = - twice. There 
will be two integration constants per span. They can be solved from 
compatibility equations. E.g. for the beam in Fig. 66, six boundary 
conditions can be written:

- at both supports, w is continuous and = 0 at the support or 
w- = w+ = 0

- at both supports, w’ is continuous or
w’- = w’+ 

The deflections due to the tendon force are added to those due to 
external loads. The latter are calculated using elasticity modulus Ec /(1+ )
for the long-term loads and Ec for the short-term loads. 

Strains in statically undetermined beams

Not considered in this course, see e.g. the textbook of Ghali & Favre. 
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Eurocodes, particularly  EC2
They are a series of European standards, aimed at design of load-

bearing structures , e.g.
• Eurocode 0  (EC0)  EN 1990-x-y … Basis of design
• Eurocode 1  (EC1) EN 1991-x-y … Loads
• Eurocode 2  (EC2) EN 1992-x-y … Concrete structures
• Eurocode 3  (EC3) EN 1993-x-y … Steel structures
• Eurocode 4  (EC4) EN 1994-x-y … Steel-concrete composite str.
• Eurocode 5  (EC5) EN 1995-x-y … Timber structures
…
• The target is uniform design philosophy and notation 
• Include Nationally Determined parameters (NDP) which are given in 

National Annexes (NA) 
• In Finland they will replace the old Finnish codes latest   1.4.2011?

In this course the methods of  EC2 will be used when design codes are 
needed. The safety factors and other NDP:s will be given if they are 
needed in the exams.  
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About notation in Eurocodes:
• Subscript c refers to concrete, y or s to mild and p to prestr. steel
• Subscript m refers to mean, k to characteristic and d to design value 
• Subscript E refers to action effect caused by load (action Effect), R

to resistance of structure (Resistance)
• Symbols for strength sand safety factor are  f and , respectively.

Example. The design value for tensile strength of 
concrete  is

cctkctctd /ff

Example. The design value of shear force due to load 
must not exceed the design value of shear resistance:

RdEd VV

sykyd /ff

cckcccd /ff

Note. In Finland ct = 1,0 and cc = 0,85 

Example. The design value for steel strength is

Example. The design value for compr. strength of 
concrete  is
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Basics of Eurocode design principles 

The design value of the resistance,  Rd, shall be higher than the design 
value of action effect, Ed, or  Ed Rd. The design variables X are character-
ised by one or more of the following values  see Fig. 67, 

X

X mX k,low X k,up

- mean value xm or nominal value
- lower characteristic value xk,low, which 
corresponds to a certain small fractile, e.g. 5%

- upper characteristic value xk,up, which 
corresponds to a certain high fractile, e.g. 95%

- instead of characteristic value, a nominal value
is sometimes used.

Fig. 67. 
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1i
i,ki,0i,Q1,k1,QP

1j
j,kj,Gd QQPGE """"""

”+” means combination of actions
means the combined action of variables. 

Ed is determined by actions Gi (permanent, one of them may be pre-
stressing P), Qi (variable action) ja Ai (accidental action). 
In ordinary ultimate limit states (ULS) the following combination is 
considered:

, Gk and Qk refer to a safety factor and characteristic value of permanent 
and variable action, respectively.  -factors are combination factors 
making allowance for the fact that the maxima of all loads seldom occur 
simultaneously.

In the serviceability limit states (SLS)  the following three combinations are 
considered:
1.  Quasi-permanent ( e.g. when considering creep, shrinkage, aesthetics)
2.  Frequent (in general for reversible effects like elastic deflection )
3.  Characteristic (in general for irreversible effects)

The corresponding combinations are
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1i
i,ki,01,k

1j
j,kd QQPGE """"""

1i
i,ki,21,ki,1

1j
j,kd QQPGE """"""

1i
i,ki,2

1j
j,kd QPGE """" quasi permanent

frequent

characteristic

Qk,1 is the leading variable action.
In Finland, two cases are considered in the ultimate limit state. First, the 
unfavourable permanent actions are multiplied by 1,15KFI, the favourable 
ones by 0,9 and the variable actions by 1,5KFI. Second, only the permanent 
actions are considered and the unfavourable ones multiplied by 1,35 KFI.

RC1
RC2
RC3

KFI

1,1
1,0
0,9

Factor KFI  depends on the reliability class RC3 
… RC1 as shown in the Table.

1i
i,ki,0FI1,kFIinf,j,ksup,j,kFId QKQK5,1G9,0GK15,1E "1,5"""""

inf,j,ksup,j,kFId G9,0GK35,1E ""
RC
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E.g. the design load 
combination for a uniformly 
distributed live load  q ja 
permanent uniformly 
distributed load p is

1,15KFI p + 1,5KFI q or 
1,35KFI p 

whicchever is greater. This 
can be expressed as 

(p + q)

Fig. 68.

Fig. 68 illustrates (in Finland only) for reliability classes  RC1 … RC3 

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 0,2 0,4 0,6 0,8 1

Share of nonpermanent load

RC3
RC2

RC1
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The -factors to be used in Finland are given by YM in YM:n asetus 
Eurocode-standardien soveltamisesta talonrakentamisessa 15.10.2007, 
which is available in www.ymparisto.fi. In the same document, all other 
nationally determined parameters of the Eurocodes like partial factors 
are given.
Examples of combination factors applied in Finland for imposed loads:

Residential and office buildings 0,7 0,5 0,3
Storages 1,0 0,9 0,8
Snow (sk < 2,75 kN/m2) 0,7 0,4 0,2
Snow (sk 2,75 kN/m2) 0,7 0,5 0,2
Wind 0,6 0,2 0

The combination factors do not affect the ULS if there is only one imposed 
load. In the SLS the load combination has to be chosen by the designer 
because the Eurocodes do not specify it uniquely, even though some limits 
are given (e.g. L/250 for the deflection, L/500 for the deflection after 
construction unless a smaller deflection is required for other reasons). 

For large loaded areas, certain reductions are allowed but they are not 
discussed here.
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In the ULS, the design value of the material strength is typically obtained 
dividing the lower characteristic or nominal strength by the relevant 
safety factor. For specific reasons, e.g. due to the long-term effects of 
the loads, difference in the actual strength of the material in the structure 
and that measured from test specimens, differences in the shape and 
size of the test specimens etc., additional factors may be necessary. E.g. 
the concrete strength is obtained from  fcd = ccfck/ c., where cc = 0,85 (in 
Finland).
In Finland, the safety factor for the concrete and reinforcing & 
prestressing steel are 1,5 and 1,15, respectively. In certain cases these 
may be reduced to 1,35 ja 1,10. This is posssible e.g. for CE-marked 
concrete elements if they meet certain strict tolerance requirements.

In the SLS the steel remains elastic, but the concrete may crack. When 
searching for the transition from uncracked to cracked section for 
evaluation of the deflection, when estimating the crack width or 
calculating the minimum amount of reinforcemen to prevent a brittle 
failure, the mean value of concrete tensile strength fctm is used.
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EC2 is not so consequent as one might expect. E.g. the basic value lpt
for the transfer length is calculated from an expression which includes 
the safety factor of the concrete, even though it is between the two 
values  0,8lpt and 1,2lpt used in the design. In other words, the mean 
value is calculated using the safety factor. 

The density and elasticity modulus of materials are considered  so 
accurately known that the mean or nominal values are used in the 
design instead of characteristic ones both in the SLS and ULS. 

Another example is the shear formula

The safety factor is applied to constant 0,18, not to the strength of the 
concrete  fck etc.

dbk)f100(k18,0V wcp1
)3/1(

ck1
c

c,Rd
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About the materials of prestressed concrete structures

Creep coefficient  = 2,8. Concete stress after tensioning = -0,45x20 MPa 
= -9 MPa creep is

cc( ) = c / Ec = 2,8x(9/30000) = -0,00084 

Loss due to creep and shrinkage is approximately

p (200 000)x(-0,00039-0,00084) MPa = - 246 MPa

This is not far from the typical strength of the reinforcing steel  in the days 
when the first attempts were made for prestressing. When the losses due to 
the friction and relaxation are added, it is no wonder that  the first attempts 
to prestress did not succeed.

Example. Assume concrete C20/25 , relative humidity 50 %, the notional 
thickness of the beam  h0 = 200 mm, cement class N, age at prestressing 
28 d

Nominal drying shrinkage cd,0 = -0,00054, drying shrinkage in (28 d, ) is 
cd( )- cd(28d) = -0,85x0,00054(1-0,20) = -0,00039
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Prestressing tendons are made of wires with thickness of a few millimetres, 
of strands made of the wires, and of bars (seldom). The surface of the wires 
may be smooth or indented to improve the bond. Due to the lack of a clear 
yield strength, the strength is given in form Rp,0,2/Rm , where  Rp,0,2 is the 
stress corresponding  to a  0,2 % permanent strain and Rm is the failure 
strength. Fig. 67 shows a typical stress-strains relationship for strand   
1640/1860 and  the design assumptions made in B4 and EC2. For more 
details, see Fig. 68.

Fig. 67. 
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The elasticity modulus  Ep of the wires and bars used in the design may be 
taken as 205 GPa in the EC2, but it may vary 195 – 210 GPa. Therefore is 
is better to assume a lower value, say 200 GPa which is the same value as   
for reinforcing bars. For strands, the value depends on the tightness of the 
strand. It is typically 185 – 200 GPa. It is given by the manufacturer. Since 
the manufacturer is not known in the design stage, it is most feasible to use 
a relatively low value, say 190 GPa in the design. (EC2: Ep = 195 GPa can 
be used.) A steel with low relaxation is recommended to reduce the 
prestresssing losses.

To reduce the losses, a relatively strong concrete is used. This keeps the 
elasticity modulus high, creep and shrinkage low.  Rapidly hardening 
cement makes an early prestressing possible, which is important in factory 
production. Strength classes lower than C40/50 are seldom used in 
factories and on site only if C40 is not likely to be easily achieved.
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The characteristic values of 0,1% 
yield limit (fp0,1k) and strength (fpk ), 
see Fig. 68, should be known for the 
prestressing steel when the material 
model of EC2 is applied. Instead of 
these,  Rp0,1 and Rm, with a slightly 
different meaning, are used.  For Ep,  
either the certified value, or if it is not 
known, 195 GPa for the strands and 
205 GPa for the wires and bars are 
used. 

Fig. 68. EC2. A: Idealised curve. 
B: Design (two alternatives).

The characteristic value of the failure 
strain, uk , is generally not known. 
Instead, the minimum failure strain is
used. E.g. uk =  3,5 % may be used, if the failure strain is guaranteed to be 
at least 3,5% by the manufacturer. ud may be nationally determined. In 
Finland ud = 2,0%. Either a bilinear, strain-hardening curve with limit strain 

ud ,or a bilinear elastic-plastic curve without strain limit may be chosen. 
Later on, yielding of steel means exceedance of the 0,1% yield limit.
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Failure mechanisms of a prestressed concrete beam 
Fig. 71 depicts possible failure mechanisms of a prestressed concrete 
beam. The failure mechanisms due to excessive tendon force, inadequate 
liftings and transport are not considered here. 

I. Bending tension failure. Yielding of steel is followed by crushing of 
concrete in the compressed zone. 
II.  Bending compression failure. Crushing of concrete in the compression 
zone before the steel yields.

Fig. 71. Failure 
mechanisms

IV.  Anchorage failure. May take place after cracking in bending. 

III.  Bending shear failure. A flexural crack turns into an inclined crack due 
to the shear force. The concrete fails above the upper end of the crack 
before steel yields.

V.  Shear tension failure in web. In absence of adequate shear reinforce-
ment, a crack appears in the web and a failure immediately follows. 
VI.  Shear compression failure in web. With strong reinforcement, a concrete 
compression strut between diagonal cracks may fail.

I

IIIII

IV

VVI

Rak-43.3110   2010  M. Pajari 122

Fig. 72 illustrates the change of curvature 
of a prestressed section ( ) with imposed 
moment(M). Before cracking the response 
is (almost) linear (stage I). The steel stress 
increases slightly. After cracking in stage II 
the stress increases both in the tensioned 
steel and in the compressed concrete. In 
the plastic stage (III), the steel is yielding 
and the curvature increases rapidly with the 
moment. Even though the increase in steel 
stress is slow, the moment can increase 
because the depth of the compression zone 
reduces and the inner lever arm grows.The smaller the amount of the steel, 
the more can the inner lever arm grow. If the ultimate compressive strain of 
the concrete ( cu) is achieved at the same time when the steel starts to yield, 
we have a balanced failure. If the steel yields before (after) cu is achieved, 
we have a normally reinforced ( overreinforced) section, respectively. In a 
balanced or overreinforced section the plastic stage does not exist.

Fig. 72. I. Elastic stage. II. 
transition stage.  III. Plastic 
stage.

General observations about bending

The steel yields Mmax has been achieved.

M

I

II

III
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Fig 73. 

At time t = 0 the length of the member 
shown in Fig. 73 is = L(0). c = 0 and the 
initial (prestress) of the steel = p0. At time 
t the contraction  of the member ddue to 
shrinkage, creep and elastic deformation 
(release of prestress) is =

Relationship between strains and stresses in concrete and steel

L
LLce csccL(t)

L(0)

LL cscc

a)

b)

c)
F FF

   p0

   = 0ce

In the ultimate limit state stress 
resultants of the the concrete and steel 
are calculated starting from the -
relationship and compatibility of strains. 
The different types of strain affect the 
stress in different ways. Calculate first 
the steel stress  when the elastic strain  

ceand stress c of the concrete are = 0. 

Lcs + Lcc+ Lce. After pulling the member by an amount of  - Lce, the  
elastic strain of the concrete is = 0, c = 0 and p = p0, where the factor 
represents the losses due to the creep, shrinkage and relaxation.  
Note. Lcs , Lcc, ja Lce include the effect of the external forces, too.
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In a postensioned structure (Fig. 74) 
consider first only the case with one 
tendon concentrating on the tensioning 
only.  

Right after the tensioning the steel stress 
is = KL p0, where KL represent the effect 
of friction and locking losses.When the 
member is pulled by an amount of - ce,P
,i.e. the elastic deformation of the 
concrete is eliminated,  the steel stress 
corresponding to the elastic zero 
deformation of the concrete is =  KL p0 –
EP ce,P. Taking into account the creep, 
shrinkage and relaxation, the steel stress 
corresponding to the elastic zero 
deformation of the concrete becomes   

p0 – EP ce,P, where represent the 
reduction factor due to all losses. Fig. 74. 

KL    p0

Lce,PL(tensioning)

L(0)

a)

b)

c)

d)

L
LLce,P cs

ccL(t)

   p0
LL cscc

   p0

F FF
E     p ce,P

  = 0ce



Rak-43.270 M. Pajari 32

Rak-43.3110   2010  M. Pajari 125

The external loads affect the losses and the losses affect the reduction 
factor . The loads also affect the elastic deformation of the concrete but 
the elastic deformation does not affect the compatibility of the steel and 
the concrete. This is the same situation as in the axially prestressed and 
loaded member.

If the tendons are prestressed in several stages, only the elastic strain 
due to the own prestress and that of the other tendons prestressed 
simultaneously are taken into account in ce,P of each tendon. The 
prestress in the other tendon affect in the same way as the external 
loads, i.e. only by the losses.  So we can write

P,ceP0P
0
P E

0P
0
P

for post-tensioned tendons

for pretensioned tendons

Here  ce,P is the elastic strain of the concrete at the depth of the 
considered tendon. It includes only the effect of the tendons prestressed 
simultaneously with the tendon considered. Elastic zero-strain        of the 
concrete is obtained from  

P

0
P0

P E

0
P
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3. Superimpose the srains from 1. and 2. , pick the corresponding stress 
from -relationship and calculate the steel force in each tendon and 
rebar. 

2. Change the elastic strain of the concrete on the most compressed edge 
of the beam  and at the depth of the outermost tendon on the opposite 
side. Based on these strain changes, calculate the strain changes P at 
the depth of each rebar or tendon. 

In the actual structures there are often several tendons, passive reinforce-
ment, bending moment etc. The following procedure can always be applied:

In general it is safe to assume that ce,P = 0. 

1. In each tendon or rebar, determine the streel strain       which 
corresponds to the elastic zero strain of the concrete ce = 0.

4. Based on the elastic strain diagram, calculate the compressive force in 
the concrete.

5. If the inner and outer forces N and moments M in the section are not in 
equilibrium, vary the elastic edge strains until equilibrium has been 
achieved . The bending resistance can be determined as explained later.

0
P
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Fig. 75. 
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In case of design assumption B1, the total strain P does not affect the steel 
stress when it  is > yield strength yd. This is the aim in normal design. The 
small role of ce,P  also becomes obvious. It cannot be too significant, 
because it is only a small share of the elastic strain and a very small share 
of the total strain P in the ultimate limit state. 

Fig 75 illustrates the means to calculate the steel stress when the 
assumptions of EC2 are used to the prestressing steel. 
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Fig. 76. 

where the meaning of         has been 
explained before. 

Calculation of bending resistance

T

C

cu

p F= 0

fcd

xx

z

cpp=

b
x
2

cpp
P

0
P

P E
0
P

Fig. 76 depicts the strain diagram 
of the concrete in ultimate limit 
state. The strain of the top fibre is 
set = failure strain cu (= cu3 in 
EC2). The strain change p in the 
steel due to the concrete strain is 
assumed equal to the concrete 
strain cpp at the depth of the steel.  
The total strain of the steel is

EC2: The concrete stress distribution is replaced by a rectangular stress 
block with depth x (Fig. 76). The stress is fcd .( 1 ja 0,8 from EC2).
Set first p = cpp ( p p) in such a way that, p = fpyd. Solve for x 
stress resultant of concrete C = b x fcd and that of steel = T = Apfpyd.
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1.  C >T (bending tension failure): Increase   cpp, until C = T. The bending 
resistance of the section is  MRd = Tz.
Special case 1b: When applying the strain-hardening curve (B2 in Fig. 75) 
and T corresponding to strain ud is < C, keep the steel strain p constant (= 

ud) and reduce the strain in the top fibre until C = T. MRd = Tz.

Note.2. If there are several steel layers, their strains are calculated from 
the assumed strain diagram and  the stresses and forces from the 
strains. All steel and concrete forces on a section must be in equilibrium. 
The equilibrium is obtained by varying the strains as above. 

Note.1. If an elastic-plastic design curve is chosen and the section is not 
overreinforced, C = T = Apfpd = b fcd x x 
MRd = Apfpdz = Apfpd(d – 0,5 x)

Note.3. The method is the same as for reinforced concrete section except 
that the steel strain corresponding to the initial prestress must be taken 
into account.

There are two cases:

2.  C <T (bending compression failure): keep the strain of the top fibre 
constant = cu and reduce cpp until C = T. MRd = Tz.
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Notation (EC2):
VRd,c shear resistance of beam without shear reinforcement 
VRd,s shear resistance based on yielding of shear reinforcement 
VRd,max upper limit for shear resistance based on compression      

resistance of concrete strut

Shear design
A part of the shear design methods are based on experimental research.  
Applying such methods outside the experimentally verified range is 
problematic. This is particularly true for the cracked zone of a beam 
without shear reinforceement. On the other hand, if the beam has shear 
reinforcement, it is difficult to know whether the different stirrups yield 
simultaneously etc. The shear design method of  EC2 has been 
criticised. Despite the criticism, the method is presented below.

In the cracked state, VRd,c is obtained from

db]k)f100(kC[V wcp1
3/1

cklc,Rdc,Rd

However, VRd,c is at least 
dbkvV wcp1minc,Rd

EC2: (6.2a) 

EC2: (6.2b) 
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fck characteristic strength of concrete (e.g. concrete C40: fck = 40 MPa)

k

CRd,c (recommended value = 0,18 MPa/ c), k1 (rec. value = 0,15) and  
vmin (rec. value = 0,035k3/2fck

1/2) are nationally determined parameters. 
The meaning of other symbols:

2;
d
mm2001min

l 02,0;
db

Amin
w

sl

Asl cross-sectional area of reinforcement which is anchored to carry 
the moment calculated around the upper end of inclined crack

bw minimum width of tensile zone of section
cp = min{NEd / Ac ; 0,2fcd}, Ac is the cross-sectional area of concrete and 

NEd external normal force or prestressing force, compressive NEd > 0.

d is the effective depth of the section

Note. Formula (6.2a) of EC2 may be valid for small bending moments  
but it overestimates the shear resistance when the bending moment is 
high (steel stress close to yielding), at least for deep hollow core slabs. 
This is possible because the bending moment is totally ignored. 
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A section is considered cracked if the tensile strength of the top or bottom 
fibre equals 0,70fctm,fl / c (= fctk,fl / c ) where

ctmctmfl,ctm f;f
mm1000

h6,1maxf

Here  fctm is the mean tensile strength of the concrete and h the depth of 
the section. This criterion is in accordance with the principles of EC2 even 
if is is not directly given there. 

In uncracked state VRd,c is obtained from

ctdcpl
2

ctd
w

c,Rd ff
S

IbV EC2: (6.4) 

I, bw ja S are the second moment of area, the web width and the first 
moment of area of concrete section,  respectively, calculated with 
respect to the centroidal axis.  fctd = fctk / c is the design value of the 
tensile strength of the concrete. cp = +PEd /Ac , where PEd is the design 
value of the prestressing force. l = lx /lpt2, where lx is the horizontal 
distance from the considered point to the end of the beam, and  lpt2 is the 
transfer lenght of the prestressing force.
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a) b) 
Fig. 77. 

Expression 6.4 means that the 
maximum principal stress in the 
web is set equal to the design 
value of the tensile strength. Fig. 
77.a shows the relevant stress 
components. 1 is attributable to 
the prestressing force, to the 
external shear force and 2 to 
the bearing pressure. The 
(positive) effect of 2 vanishes rapidly when distancing from the bearing. 
So the resistance is determined by 1 and only. This results in Eq. (6.4) 
which is applied in the critical section of Fig. 73.b. The worst drawback of 
(6.4) is the fact that it ignores the effect of the varying prestress on , 
which results in overestimation of the shear resistance of some hollow core 
slab types by tens of percent. For this reason (6.4) should not be used. 

On pages16 – 17 equation = VS/(Ib) has been deduced. A constant 
normal force was assumed, i.e. dN/dx = 0. When the normal force is not 
constant as at the end of a pretensioned beam, special considerations are 
necessary.

Centroidal
axis

Critical section

45
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Fig. 78 depicts a pretensioned simply supported 
beam with n tendon layers. A free body diagram, cut 
from the beam, is shown in Figs 79 – 80. It is loaded 
horizontally by axial stress , shear stress and the 
resultant Pcp of the tendon forces above the horizontal 
cut.  Consider separately the concrete stresses due to 
release of the prestress (subscript  c,P) and external 
load (subscript c,V for shear force ja c,M for bending 
moment). 

Fig. 78. 

Fig. 79. 

y

M

hpp yP,j Pj
P1

Pn

a. External load:

Horizontal Equilibrium of the cut in Fig. 79:

x
I
Vyxy
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dM

I
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d

mm
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cpcp
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A
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ydA
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dAx
dx
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x
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Acp
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y
I
M
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y
I

yP

A

P
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j
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m

j
j

P,c

j
j,P

j

mj

j

m

P,c y
dx
dP

I
y

dx
dP

A
1

dx
d

Fig. 80 shows the horizontal actions due to the prestressing force acting on 
the free body. They are axial stress , horizontal shear stress cp and the 
resultant Pcp of the tendon forces penetrating the cut.

x
y

x

P   + PP

b
Acp

c,P

c,Pc,P

c,P c,P

c,P

c,P

x
dx

d P,c
P,c x

dx
dP

P P,c
P,c

b. Tansfer of prestressing force:

Horizontal equilibrium of the cut in Fig. 80:

x
dx

dP
xdA

dx
d

PdAxb cp

A

P,c
cpP,c

A
P,c

cpcp

: b x

Fig. 80. 
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Notation: 

P
mm

cp
cp y

I
S

A
A

dx
dP

b
1

If there is only one tendon layer and it is below the cut (free body): 

Superposition: cPcV

V
I
S

dx
dP

I
Sy

A
A

b
1

m

p

m

cp (Yang 1994)Only one tendon layer:
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Acp and Scp are the area and first moment of the area above the consider-
ed axis. Scp is calculated with respect to the centroidal axis of the section. 
One consequence of Yang’s formula is the fact that the maximum 
principal stress is not necessarily close to the centroidal axis. For this 
reason, the bending stresses must also be taken into account when 
calculating the normal stress 1.  E.g. the critical depth for a section 
shown in Fig. 81 is located at a level where the web with constant width 
and the lower chamfering meet. 
So: is calculated from Yang’s 
formula or from generalized   Yang’s 
formula and 1 from

y
I
M

A
N

mm
1

From and 1 the principal stress is calculated and compared with the 
tensile strength. The method is presented in detail in the first amendment 
(2008) to standard EN 1168 which is the European harmonized product 
standard for hollow core slabs. 

Fig. 81. 

Critical
 depth

N and M include both the external actions 
and the actions due to prestress.
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Transfer of prestressing force and anchorage in pretensioned tendons

fctd(t0) is the design value of concrete tensile strength at release (t = t0)
diameter of tendon

pm0 steel stress immediately after release 
i and i constants

After the release, the stress at the end of a pre-
tensioned tendon is = 0. At a certain distance lpt
from the end, there is no slip between the 
tendon and concrete and the prestress has 
reached its full value p0 . Fig. 82 illustrates the 
gradual increase of the tendon stress. It is 
generally believed that the stress gradient   
decreases with x as in curve A in Fig. 82.  How-
ever, to simplify the calculations, the linear 
curve B shown in Fig. 82 is generally adopted 
in the design codes.

Fig. 82. Transfer of pre-
stressing force. A. 
Assumed. B. Idealized.

lpt

p0
A

B

x

)t(ff 0ctd11pbpt
bpt

0pm
21pt f

l

EC2:The design value of bond strength fbpt  and the basic value of transfer 
length lpt are obtained from 
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EC2: Design according to Fig. 83 .

Fig. 83. A. Transfer of prestress 
when lpt1 is prevailing. B. 
Anchorage ( lpt2 is prevailing).

lpt1 = 0,8lpt ,
lpt2 = 1,2lpt ,
lpbd distance needed for anchorage of 

stress pd,
pi initial prestress,
p prestress after losses,
pd steel stress to be anchored,

x distance to the point where the 
transfer begins, 

bpdppd22ptpbd f/ll

Note. In the design, lpt1 or lpt2 is chosen, depending on which one gives the 
critical effect. The unfavourable effects of the tendon force, like cracking of 
the beam end, must be evaluated using lpt1, the favourable ones using  lpt2. 

I

x

pd
pi

p 8

pt1I
pt2I

B

A

bpdI

Note. Anchorage resistance is checked only for cracked sections. A section 
is considered cracked if the tensile stress calculated using elementary 
beam theory exceeds the value   0,70fctm,fl / c , see p. 132.
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Note. The force to be anchored is cal-
culated from the moment around the 
upper end of the crack, see Fig. 84. 
When there is no shear reinforcement 
and the dowel action of the main rein-
forcement is ignored, pd is obtained 
from the equilibrium of the inner and 
outer bending moment around point O :

Fig. 84. 

zAcotzxM ppdEd

Angle is chosen in such a way that  
1 cot 2,5 or 22 45 .
A small value of results in a conservative value for the anchorage 
resistance. This is necessary for a beam without shear reinforcement.

The shear resistance of a beam with shear reinforcement is in EC2 cal-
culated using truss analogy. Simultaneous yielding of all stirrups crossing 
the inclined crack is assumed. The concrete serves as compression 
diagonals and chords, the shear reinforcement works as vertical or 
inclined ties and the main reinforcement as tensile chords. 

q(x)

x+zcotMEd( )

pdAp

O

z

zcotx
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Fig. 85 illustrates the model. is 
the angle between the shear 
cracks and horizontal axis (gives 
the direction of the compressed 
diagonal). is the angle between 
the stirrups and the horizontal 
axis. 

A B

CsD

V M

N

z

Fig. 85. A. compressed chord. B. 
Compr. diagonal. C. Tensile chord. 
D. Stirrup.

sin)cot(cotzf
s

AV ywd
sw

s,Rd

)cot1/()cot(cotfzbV 2
cd1wcwmax,Rd

The shear resistance is now

max,Rds,RdRd V;VV min where

(yielding of stirrups)

(compression failure   
of diagonals)
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Asw is cross-sectional area of stirrup, 
s horizontal spacing of stirrups,
z inner lever arm,
fywd design strength of shear reinforcement,
bw minimum web width of beam, the zone below the stirrups is not 

considered
fcd design strength of concrete,

1 coefficient, allows for the effect of shear on the concrete strength
cw coefficient, allows for the effect of axial compression

cdcp f25,00

cdcpcd f5,0f25,0
cdcp f/1

cdcpcd ff5,0
25,1

)f/1(5,2 cdcp

cw

No prestress 00,1 0,6

ckf

MPa 60

MPa);0,5 (2000,9max /fckMPa 60

1

cp is the average axial stress in the concrete due to the design value of 
the normal force (compressive stress positive). 
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zcot( zcot(

BA

CD

zcot( zcot(

z C T

The shear model of EC2 is based on the truss analogy illustrated in Fig. 
85. The compression diagonals are concrete struts parallel to the cracks 
and the tensile diagonals are stirrups, both connecting the tensile chords 
with the compression chords. All stirrups crossing line AB belong to tie T 
and all oncrete struts crossing line AB belong to the compression strut C 
as shown in Fig. 86.b . 

Fig. 86. 

The resistance of the stirrups can be solved assuming an inclined section 
shown in Fig. 87.a. The cross-sectional area A ja yield force Fsw of the 
stirrups cross-sing the section are

a) Structure. b) Mechanical model.
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s

z

zcot( zcot(

Fswsin( )

A sw
Fsw

zcot( zcot(

Fc z
t

V

Kuva 87. 

)cot(cotz
s

AA sw
ywdsw AfF

The final expression is obtained by setting the shear force equal to 
Fsw sin , the vertical component of  Fsw.

The resistance of the compression strut can be solved from  Fig. 87.b. If 
the concrete strength is =  cw 1fcd, The resultant of the compressive 
forces parallel to the cracks is  Fc = cw 1fcd tbw. The vertical component 
of Fc is = Fc sin and t = z(cot +cot )sin . The expression of EC2 
follows by setting  Fc sin equal to the shear force.

a) b)
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bw is replaced by bw,nom if there are post-tensioned tendons in the web.

bw,nom = bw for metallic, grouted ducts with bw /8,

bw,nom = bw - 0,5 ,  for metallic, grouted ducts, > bw /8,

bw,nom = bw – 1,2 ,  unbonded tendons, ungrouted ducts, non-metallic   
ducts even if they are grouted

bw,nom is calculated at the most unfavourable depth.

About unbonded tendons
To facilitate the grouting, the duct diameter must be greater than that of the 
tendon. To prevent corrosion, a metallic duct must be covered with 
concrete, the thickness of which depends on the exposure class. Post-
tensioning presses a curved tendon against the duct or far from the nearest 
(top or bottom) fibre. Result: In a slab or shallow beam, a considerable 
share of the depth of the section cannot be effectively exploited.  

The unbonded tendons are not grouted. Therefore, the outer diameter of 
the duct is only slightly greater than that of the tendon. Given a depth of the 
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Fig. 88. Post-tensioned slab [BY210].

Fig. 88 illustrates a slab 
supported along four 
edges and prestressed 
by parabolic tendons of 
which only the midmost 
ones are shown. In x-
direction, the transverse 
forces result in a vertical 
line load qx, in y-direction 
load qy. Uniformly 
distributed tendons cause 
a vertical uniformly 
distributed load q.

,
L
ep

8
L
ep8qqq 2

y

yy
2
x

xx
yx

Lx and Ly are the span widths, px=Px/sx ja py= Py /sy, 
sx ja sy denote the spacing of tendons in y- and x-
direction. 

beam or slab, the curvature can be made greater than that of the grouted 
tendons, which is a considerable advantage in slabs. In a flat slab (floor 
without beams), it is easier to fit the unbonded tendons above the columns 
than the bonded ones. The cost of grouting is saved. For these reasons, the 
unbonded tendons are widely used in flat slabs. 
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In the ultimate limit state of bending the steel stress in the tendon is higher 
than the prestress but remains in ordinary beams below the 0,1-limit. The 
concrete failure in compression is the failure mechanism. In simplified 
design the steel stress is first evaluated and the tendon forces calculated. 
Next the depth of the compression block in concrete is solved from the equi-
librium of the tensile and compressive forces. Finally, the bending resistance 
is obtained as the product of the inner lever arm and the tendon forces.

Since an unbonded tendon is fixed to the concrete only at the ends, its strain 
does not follow the strain of the concrete but is almost uniformly distributed 
between the ends.  The strain increase of the concrete is localised in the 
same zones as the high bending moment. The steel strain also increases but 
much less because it is not localised. The elongation of the tendon can be 
integrated from the strain increment of the concrete along the tendon. The 
elongation divided by the tendon length is the strain increment in the steel. 
Because the integration is a tedious way to find out the steel strain and 
stress, approximative methods have been developed. In one of them, the 
deformations of the beam are assumed to take place only in plastic 
hinges. If no strain evaluations are made, the steel stress can be assumed 
to be  50 MPa higher than the prestress (EC2). 
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Fig. 89 depicts a prestressed flat slab with irregular column spacing. 
Consider the hatched zone between lines  A & B and 1 & 3. The primary 
tendons P are distributed uniformly between lines 2 and 3. By adjusting  
the force and curvature of the tendons, the transverse forces are made 
balance a predetermined uniformly distiributed load. 

Fig. 89. Post-tensioned 
flat slab [BY210].
P: Primary tendon.
S: Secondary tendon.

The secondary tendons follow the column lines A, B, … They are designed 
to carry the transverse downward forces due to the downward curvature of 
the primary tendons (support reactions) . 
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CONCRETE-CONCRETE COMPOSITE 
STRUCTURES

Typically the lower part is prestressed:

Hollow core slab + topping

Solid plank + topping

Double-tee slab + topping

I-beam + topping 

Fig. 88.
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Effects of topping concrete

• Enhances the load-bearing cpaciity, particularly seismic
• Enhances the stiffness
• Facilitates HVAC installations (particularly solid plank) 
• Enhances the diaphragm action (stability)
• Distributes concentrated loads 
• Makes cantilevers and partial continuity possible
• Improves sound insulation and fire safety
• Offers a possibility to use reinforcement against 

accidental actions
• Cost-effective, if a thick screed is needed in any case
• Good workmanship needed to ensure the bond between 

the new and old concrete 
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• The interface between the old and new concrete may often be 
assumed stiff unil failure

• The resistance of the interface is often strenghened by shear keys, 
grooves or shear reinforcement

• In the serviceability limit state the structure is uncracked in ordinary 
cases (prestressed lower part)

• Elementary beam theory (Hooke’s law, planes perpendicular to the 
centroidal axis remain perpendicular) is a good approximation in the 
serviceability limit state.

• In the ultimate limit state, the principles of the reinforced concrete 
strucctures are applied.

• Propping ( temporary supports during execution) is used only in 
special cases (solid planks+topping)

General about the design 
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Differential shrinkage
Parts with different ages and materials  have 
different shrinkages. The differential 
shrinkage sh tends to bend the structure. 

shupupAEP

I. Assume the upper part separated from 
the lower part and let it shrink by  sh 
which is equal to the differential shrinkage.
II. Pull the upper part with force P = -EA sh , 
i.e.  return the part  to its original length. 
III. While P is acting, connect the parts.
IV. Compress the composite structure with 
the countervectors of P.

shL/2

L

PP

PP

PPP P

shL/2

I

II

III

IV

Fig. 89.

Fig. 90.

III
P

kIV y
)EI(
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shupIII&II,up E
0III,low

Note! sh < 0 

Ek is elasticity modulus for either part, 
yP y-coordinate of P. 

tup

sh,low sh,up

sh

tala
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Note.

The elastic stresses and strains due to differential shrinkage sh, calculat-
ed from the free shrinkage tend to overestimate the real consequences of 
the differential shrinkage. This is attributable to creep and relaxation in the 
new concrete, caused by the restraining old concrete. This effect is taken 
account by reducing the free differential shrinkage. The reduction factor 
may be of the order of 0,30. Generally valid rules are not available because 
- experimental data are missing 
- the calculation methods for the free shrinkage vary which also affects the 
reported reduction factors

It is often accurate enough to consider uniform differential shrinkage 
because the upper part may dry both upwards and downwards. 

I II III IV

Fig. 93. Stresses 
of concrete in   
stages  I – IV.
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Shear at the interface when the cross-section is uncracked

Close to the support the concrete may be uncracked in flexure until 
failure, particularly in pretensioned elements wiithout shear reinforce-
ment. In such a case the shear stress in the interface can be 
calculated from the well-known expression

bI
VS

b)EI(
V)ES(

m

up,mup
b

(EI) is the bending stiffness of the 
whole cross-section and (ES)up
the first moment of the area of the 
upper part (above the interface) 
around the centroidal axis of the whole section. Im and  Sm refer to the 
corresponding transformed characteristics. b is the widht of the interface. 
Shear force V = VEd  includes the effect of all external forces causing shear 
stresses in the interface. 

In EC2 symbols vEd and VEd. are used for the shear stress and shear 
force.

Kuva 94.
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Shear at the interface, when the cross-section is cracked

Consider the zone between two inclined cracks, see Fig. 95. 
Equilibrium: C=C1+C2 = T,  M = Cz , M = (Cz)=z C=z (C1+C2)

CC)C(Cxbv 2Ed

Fig. 95.

C2 C  + C2 2
x

vEd

Equilibrium of horizontal forces in Fig. 96 (b = width of the joint), gives 

Generally:

x
Cz

dx
)Cz(d

dx
dMV Ed

Ed

bz
V

xb
Cv Ed

Ed

C/C2

Fig. 96. vEd = shear stress

Notation:

V

M

Ed

Ed

T+ T

C1

C2 C  + C2 2
C  + C1 1

x

T

z

C
x

It is safe to assume that = 1: 

C ( because on < 0)

bz
Vv Ed

Ed
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Shear resistance of interface

)}cossin(fcf;f5,0min{v ydcnctdcdRd

250
f16,0 ck (NDP, may be nationally chosen)

In Fig. 97, the joint is subjected to compressive 
stress n ja and shear stress vEd. Reinforcement 
with cross-sectional area per unit area crosses 
the  joint. According to EC2, the shear resistance of 
the joint is: 

NEd

vEd

x

A s

• Parameters c and depend on the roughness of the old concrete 
surface

• fck ja fcd are the characteristic and design value of concrete strength, 
respectively 

• is the angle between the joint and the reinforcement. If <45° or 
> 90°, the reinforcement is ignored ( = 0)

• n is compressive stress normal to the interface positive, 
compression positive. If  is tension, it is set equal to zero.

where

Fig. 97.
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Classification of joints:
c

Very smooth 0,025– 0,10 0,5
Smooth 0,20 0,6
Rough 0,45 0,7
Dowelled according to Fig. 98 0,50 0,9

Fig. 98. Dowelled joint according to EC2. A: new concrete. B: old 
concrete. C: anchoring.
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In the SLS the compressive stains are small when 
compared with those in the ULS.  (Fig. 99). 
Therefore, the small differential strains due to the 
execution can be ignored, see  Figs. 100 and 101. 
Conclusion: Calculate the bending resistance as 
for a homogenous concrete beam taking into 
account the different strength values.

Bending resistance of concrete-concrete composite beam

Fig 100. Compression in topping only.

Fig. 99. 

c

c
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EC2: The stresses in concrete are replaced by stress blocks with depth x. 
The stress equals fcd .( 1 ja 0,8 from EC2). An approximative 
value for the compressed zone (x) is determined as follows:

Fig. 101. Neutral axis in old concrete.

1. Set strain on the top =  failure strain cu (point O in Figs 100 and 101).
2. Let the concrete strain  cpp  at the centroid of gravity of tendons be such    
that the steel yields, (point Q). Calculate the tensile force T.
3. Use the line QO to calculate x x and compression  C = C1+C2 .
4. Change cpp new x, … until C = T , i.e. equilibrium of forces. If the 
strain-hardening of steel is ignored, iteration is not needed to solve x.

C
cu

P+g q tot

cu fcd,2

& =

x 2

2z 1fcd,1

x

1z
P

Q

C1

T
1

2 O

Forces
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Example. Hollow core slab

Concrete: cc=0,85, c =1,5;   Steel:  c =1,15  

HCS: Width 1160 mm, strength C50/60 =0,8, =1, 
fcd1=0,85x1x50/1,50 = 28,3 MPa, effective depth d = 230 mm

Strands: 10 , Ap=93 mm2/ strand, prestress. p0 = 1000 MPa, losses 
20%, Ep = 190 GPa, strength 1600 MPa , yield force = 1,294 MN  

Topping: width 1160 mm, strength C35/45 =0,8, =1, cu =0,0035, 
fcd2=0,85x1x35/1,50 = 19,8 MPa, thickness = 50 mm

Equil. of forces x = 68,0 mm, z1 = 228 mm, z2 = 255 mm, C2 = 1,148
MN, C1 = 0,146 MN and MRd = C1z1 + C2 z2 = 326 kNm

Ccu
fcd,2

& =
0,8x 2

fcd,1
x

1z
C1

T(1- ) p0 p

cu

p

2z230

50

Fig. 102.



Rak-43.270 M. Pajari 41

Rak-43.3110   2010  M. Pajari 161

Note 1.
Assuming the steel strength constant (=1600 MPa, no strain-hardening), 
gave a constant tensile force T = 1,294 MN.

The maximum value of C2 = (19,8 MPa) x (1160x50 mm2) = 1,148 MN < T 
C1 = (28,3 MPa)xh1x(1,160 m) =  (1,294 – 1,148) = 0,146 MN the depth of 
the stress block in the hollow core slab is  h1 = 4,44 mm z1 = 230 – 4,44/2 
= 227,8 mm, z2 = 255 mm.  To verify the failure mode, it must be checked that 
the ultimate strain ecu = 0,0035 is not exceeded. The strain of the steel at the 
start of yielding is 1600/190000 = 0,842 %. The strain due to the prestressing 
after losses is (1-0,20)x1000/190000 = 0,421 %. 
So, the strain of the concrete at the centroid of the 
tendons is  0,842 – 0,421 = 0,421 %. Giving the top 
fibre of the section the strain  0,0035 gives the depth 
of the compression zone the value of 127 mm and 
the bending compression failure is out of question.

cu

p = 0,421 %

= 0,35 %

127

Assuming strain-hardening steel would mean that the 
steel stress varies and iteration is needed. Fig. 103.

Note 2.
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About harmonized product standards and CE marking

The Construction Products Directive (CPD) states that the construction 
products put on the market shall predominantly be CE marked if they are 
subject to Essential Requirements. The requirements for concrete 
elements deal with the mechanical resistance and stability, fire resistance 
and durability.  The Finnish authorities have interpreted that the CE 
marking is not obligatory but the next update of the CPD most likely makes 
it clear that it is. 

A rough interpretation is that the CE marking tells in a unified way the 
essential properties of a construction product. The properties, as well as 
the methods how the values or classes of the properties are determined 
and declared, are given in harmonized product standards (hEN), in a 
European guide for technical approvals (ETAG) or in a CUAP (Common 
Understanding of Assesment Procedure, a guide for products with few or 
only one manufacturer, must be unanimously approved). EN standards are 
made by CEN which is a European standardisation organisation, ETAGs 
and CUAPs by EOTA which is a European organisation for technical 
approvals.
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A   CE marked construction product can be transported from one country to 
another, and the authorities have no right to prevent the use of it if the 
properties declared in the CE marking meet the requirements of the 
authorities set beforehand in the country where the product will be used.

This principle is based on the fact that the authorities have had the right to 
require beforehand that all properties  which are subject to essential 
requirements in the country must be given in the CE marking. In addition, 
the authorities are obliged to give the national requirement levels to these 
properties. In other words, this is a prejudgement about the essential 
requirements and how the properties are determined, declared and 
controlled. Only the requirement levels may vary from country to country. 
The aim is to eliminate trade barriers between countries.

The product standards and European technical approvals (ETA) are in 
some cases important from the structural engineer’s point of view because 
they may specify design methods which are not given in the Eurocodes or 
which may be in contradiction with those given in the Eurocodes.  In such a 
case the product standard or ETA must be followed.  
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Product standards have been made e.g. for linear concrete elements 
(beams and columns) ribbed  floor elements (e.g. double-tee slabs) 
hollow core slabs, concrete fence elements, wall elements, retaining wall 
elements etc.  

Examples of progress of  CE marking in Finland
- cement has been CE marked for years
- first CE marked hollow core slabs in Finland in 2009
- the standard for reinforcing bars (EN 10080) may be available during 
the next few years (this is an optimistic guess) and before this happens, 
no CE marking is possible. 
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About cracking of concrete

One of the advantages of a prestressed concrete structure is the lack of 
cracks in the SLS which results in small deflections and improved dur-
ability. However, EC2 does not require that the prestressed structures be 
crack-free in the SLS. This is justified by several reasons, the most 
important being the fact that the deflections and durability are often in 
control even if there are small cracks. 

The risk of cracking is present already when the prestressing force is trans-
ferred (or even before due to the shrinkage of the concrete). Transverse 
tensile and compressive stresses develop within the anchorage zone, 
compressive and bending stresses outside it. The resulting principal tensile 
stresses may be high enough to make the concrete crack. 

EC2 requires control of the crack widths. The design rules for this purpose 
have given rise to debate and there is even more debate about the role of  
the crack width in durability. On the other hand, if the deflections become 
too large or there is a risk of steel corrosion, elimination of cracks may 
help, and it is always recommended to design crack-free structures if it 
possible at reasonable costs. 
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Fig. 104 illustrates the stresses due to a centric anchorage. There are 
transverse tensile stresses and longitudinal compressive stresses. The 
tensile stresses are inversely proportional to the size of the anchor plate. 

Fig. 104. a) Small loaded area. b) Large loaded area. [BY210]. 

Puristus

Veto

Puristus

Veto

The eccentricity of the force has a strong increasing effect on the cracking 
risk. The notation shown in Fig. 105 is used to evaluation of cracking 
stresses and forces in the following expressions. Fig. 106 shows the real 
and simplified cracking stress at the end of a beam. Fig. 107 shows the 
resultant of the cracking stresses.

a) b)
Tension Tension

Compression Compression
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Fig. 105. Notation.[BY210]. 

Fig. 106. Real and simplified stress 
distribution.  [BY210]. 

Tensile stress
ct

Anchor

Share of beam end belonging to anchor

Real distribution

Simplified distribution

Distance from end
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Fig. 107.  Resultant Ft. of 
the transverse tensile 
stress distribution 
[BY210].

In an ETA (european technical approval) for a post-tensioning system,  
instructions are given how to avoid cracking or excessive cracking due to 
the anchorage forces. These instructions are often based on strut-and-tie 
methods (truss analogy) and they do not assume completely crack-free 
concrete.
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In the Finnish practice (B4) no transverse reinforce-
ment due to the anchorage is necessary in case the 
condition on the right is in force. Aco is the area of the 
anchor plate and  fck,K150 the characteristic value of the 
concrete cubic strength. Using the cylindrical strength 
fck, this is roughly equivalent to the condition

c

150K,ck

0c

Ed f7,0
A

P2,1

c

ck

0c

Ed f7,0
A
P

Cracking force for  centric compression is obtained from 

1

0
EdEd,1t b

b1P25,0F (by Mörsch, b1 and b0 in the direction of 
Ft1,Ed, see Figs 105 and 108, 
Leonhardt: coefficient = 0,30 pro 0,25) 

Leonhardt: Eccentric compressive force PEd causes a cracking force at 
the depth of the centroidal axis, which is

h
e2

1

P015,0F
p

Ed
Ed,2t (h is the depth of the section and ep

eccentricity of PEd , see Fig. 108 ) 

If there are two symmetrically acting forces PEd, one above and one below the 
centroidal axis, the cracking force is doubled. 

Rak-43.3110   2010  M. Pajari 170

Fig. 108. Reinforcement needed 
to control transverse cracking 
when the cracking force  around 
the tendon (Ft1,Ed ) is greater 
than that at the centroid-al axis  
(Ft2,Ed).[BY210]. 

For the cracking force at the centroidal axis of a deep beam, BY210 
gives an expression (see Fig. 87)  

Stirrups for force Ft2,Ed

Additional stirrups for force 
Ft1,Ed - Ft2,Ed

Rak-43.3110   2010  M. Pajari 171

c

Ed
pEd,3t A

Pbs2,0F
Fig. 109. 
[BY210]. 

b is the width of the concrete belonging to the anchor plate of 
the tendon group, 

sp free distance between the tendon groups,
PED total tendon force
Ac area of concrete belonging to the anchor plate, see Fig. 105.

The expressions are not universal. They fit best to rectangular sections and 
postensioned beams. (Leonhardt’s F2t-formula also applies to pretensioned 
beams.) For beams with thin webs the cracking stresses are sensitive to the 
shape of the section. For this reason, the ends of the I-beams are often 
made rectangular (thicker). Despite this, a part of the tendons must be 
debonded for a certain length at the ends to avoid excessive cracking. 
The formulae are not applicable to hollow core slabs because they cannot 
be shear reinforced. The cracking forces are carried by the tensile strength 
of the concrete. The design method is presented in standard EN 1168.
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The release may also give rise to bending cracks close to the ends of pre-
tensioned elements. For post-tensioned beams, the top fibre of the spans or 
the bottom fibre at the interior supports are sensitive to cracking when the 
tendon force is high when compared with the self-weight of the beam. The 
cracking is evaluated using expressions 

Pk(t0) is the prestressing force in tendon k at the time t0 (release or pos-
tensioning), y1, y2 (<0) and yk,p refer to the y-coordinate of the bottom 
fibre, top fibre and tendon k, respectively, MP and MG are the bending 
moment due to the prestressing and self-weight, fct the tensile strength of 
the concrete and A & I are area and second moment of area of section 
(gross or transformed).

)t(fy
I
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A

)t(P
0ct1

GPk
0k

GP,c

)t(fy
I

MM
A

)t(P
0ct2

GPk
0k

GP,c

a)

b)
Fig. 110. a) Post-tensioning.  
b) Pretensioning.  

p,k0
k

kP y)t(PMNote. For statically 
determined beams:
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The inequalities should be in force at all (critical) sections. There are at 
least two ways of thinking:

1. If the elements are uncracked after trasportation and installation, or if 
the structures post-tensioned on site are intact after some days after the 
tensioning, it does not matter, how much there has been safety margin 
against cracking at prestressing. The prestressing force decreases and 
the strength increases with time. 

2. The normal safety factors shall be applied during the execution and the 
design value of the concrete tensile strength have to be used.

Alternative 1 allows the designer to decide, which tensile strength and 
safety factors he should use. The tensile strength of the concrete may be 
e.g. fctk , fctd,  fctk,fl or 0. The nominal value may be chosen for the self-
weight and prestressing force, and the safety factors for the loads may be 
1,0 or those used in the ULS.  

EC2 gives no clear answer, how to prevent or control the cracking due to 
the prestressing.
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ctmfl,ctm f;h-f 1
m 1

1,6max

ctkfl,ctk f;h-f 1
m 1

1,6max

(mean value)

(characteristic value)

h is the depth of the section and  fctm (fctk) the mean (characteristic) 
value of the tensile strength.

More generally, there is no European consensus concerning the cracking 
criteria to be applied in the design. The afore-mentioned flexural tensile 
strength is (according to EC2)

The flexural tensile strength is not used as a design criterion in the SLS, 
but the criteria of table 7.1N in EC2 are applied. The idea is that if no 
tensile stresses are accepted, the beam remains uncracked and the 
durability is good enough for severe exposure classes. In other cases 
there are tensile stresses which necessarily result in some cracks and 
controlling their width is the only thing that can be done.

( According to B4, fctk,fl = 1,7fctk. This value is independent of the section 
depth and supported by no research result.)
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Reinforced and   Pretensioned and grouted 
unbonded post-tensioned

Exposure class     Quasi permanent Frequent load combination
load combination 

X0, XC1    0,41 0,2
XC2, XC3, XC4        0,3  0,22

XD1, XS1
XD2, XD3,     0,2  No tensile stresses allowed 
XS1, XS3

EC2 (National annex of Finland), Table 7.1N:  Maximum crack widths  
wmax [mm]. 

Note. 1. In classes X0 ja XC1 the crack width does not affect the 
durability, and this limit is set for aesthetical reasons. If the appearance is 
not relevant, the limit may be increased.
Note. 2. In these classes the quasi permanent combination must not cause 
tension. 

Explanation: Carbonisation C, Sea water S, Deicing salt D
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The design rules of EC2 for the crack width are regarded as doubtful by 
many researchers. In many caes they result in considerably smaller crack 
widths as B4 and there are also some inconsistencies. This part of EC2  
is likely to be modified in the near future. Therefore, the design rules for 
crack width are not considered in this course. 

The calculation methods for the crack width are not adequate for prelimin-
ary design, i.e. for finding the measures of  the section and prestressing 
force. For this purpose, the following inequalities may be applied: 

)t(fy
I

MMM
A

)t(P
ct1

QGPk
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)t(fy
I
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A
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ct2

QGPk
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where the coefficients k take into account the losses at time t in tendon k
and MQ is the bending moment due to the external forces .

p,k
k

kkP y)t(PM

Note: For a statically 
determined beam:
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The tensile strength may be the characteristic flexural tensile strength of 
the  concrete  fctk,fl.  If the amount of the prestressing steel is clearly higher 
than the minimum amount, the crack width at the cracking load will not 
exceed 0,2 mm. In such a case, if the stress is lower than the tensile 
strength, the crack width will remain below 0,2 mm. However, the crack 
width must be checked in the final design. 

To ensure that the beam remains uncracked, it is preferred to check the 
inequalities on the previous page for a characteristic load combination with 
fct = characteristic axial strength. The risk can still be reduced by choosing 
the prestressing force so high that the characteristic load combination does 
not cause tensile stresses. 

About the compression of the concrete

EC2: During prestressing, the compressive stress of the concrete must 
not exceed 0,60fck(t0) (in some circumstances in Finland 0,65fck(t0) is 
acceptable). If the permanent stress exceeds 0,45fck(t), the nonlinearity of 
the creep must be taken into account.
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About section design
The pretensioned concrete structures are in general precast elements. The 
free choice of their cross-section is restricted due to the moulds, reinforce-
ments etc. The rectangular beams or other elements, for which the moulds 
are made case by case, give the widest freedom. On the other hand, the 
designer should check the possibilities of the producers of solid slabs, I-
beams double-tee slabs and hollow-core slabs before proposing his own 
ideas. In Finland, the shape and size recommendations of the precast 
element industry are largely followed, which makes it easy to use elements 
from different producers in the same building.  

The casting machines and moulds can be modified for production of 
innovative section shapes. Such efforts should be organised as product 
development projects in which all aspects comprising the mechanical, 
acoustical and fire performance as well as the production, transport, 
installation, durability, economics etc. are considered.

The sections of hollow core slabs are fully controlled by the casting 
machines. In Finland the slab width is 1,2 m and the depth options 150 
mm, 200 mm, 265 mm, 320 mm, 370 mm, 400 mm ja 500 mm. 
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Due to the standardisation of the precast prestressed elements, their 
producers have calculated the resistance of their elements for uniformly 
distributed load in advance, at least for the maximum prestressing force. 
The results are available to the structural engineer as tables, charts or 
computer programs. With these aids, the sections can easily be specified  
in the preliminary design.  

The detailed design is concentrated to the producers or to their consult-
ants. Thanks to this, the reinforcement and details are those which fit best 
to the production. The designer of the building frame has to provide the 
element designer with information concerning the position of the 
elements, preliminary measures, openings, holes, supports, loads etc. 
which may affect the final design. To be succesful, he must have the basic 
knowledge of the behaviour of the elements.

Rak-43.3110   2010  M. Pajari 180

The ultimate limit state of bending can be used for finding the dimensions 
of the section and the prestressing force as an alternative for the cracking 
considerations in the SLS.  On the other hand, attempts are made to take 
care of the other ultimate limit states (shear, torsion, combined limit 
states)  by additional reinforcement in such a way that they only 
occasionally may determine the dimensions of the section.

Post-tensioned structures are cast on site using traditional methods.
Therefore, their geometry can be chosen relatively freely. 

The lower limit of the section is affected by the requirement that the 
section must be large enough to accommodate the anchors, ducts and 
their cover concrete. This requirement is affected by 
- The SLS: a certain combination of tendon force and arch depth is 
needed to keep the deflections and crack widths acceptable
- The ULS: a certain internal lever arm is needed to balance the external 
bending moment.
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Special considerations

Buckling of slender beams, particularly pitched I-beams, must be taken 
into account in lifting, transporting and installation. Since the beams are in 
the completed structure tied with concrete roofs and floors to each other, 
which in ordinary cases prevents the buckling, it is preferable to provide 
the beams for transportation with external auxiliary structures which 
increase their lateral bending stiffness. Advice for the design against 
buckling are given e.g. in BY210.

Buckling of beams

The section must also be wide enough so that
- there is enough space for the tendon
- the concrete can carry the stresses
- the stability requirements in use can be solved  

Fig. 111. [BY 210].   

External tendon   
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A A B

B

Hinge

Fig. 112. Pitched I-beam.  

Fig. 114.  

Clamped

Fig. 113. Support conditions in two 
directions.

c1

c2

Fig. 115.  

de St. Venant’s torsion modulus 
for the rectangle in Fig. 114 is

3
21t cc

3
1I and for the grey I-beam 

it is the sum of the It:s of the parts. 
For more accurate values, see any 
textbook of structural mechanics. 

Y

Z
PP

B  -  B Yksinkertaistus

Plan:

Elevation:

Hinge Clamped

Simplification
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Buckling due to uniformly distributed load
Consider a case in which a slender beam is supported at the ends. The 
span is = L. The temporary supports used during the lifting have been 
removed but the beam has not yet been tied to other stabilizing 
structures. The self weight of the beam shall fulfil the requirement g qkr/2 
where  qkr is the critical buckling load of the beam per unit length. BY210 
gives

3
ytcmcm21

kr L
II4,0E

q

, if there is hinge support in transverse direction 

t

yl
1 I4,0

I
L
d44,11

4
1

2

a22

2
b22 1 , if clamped at supports in transverse direction 

2
t

2
fy

LI4,0
zI2

bot,ytop,y
fy I/1I/1

2I

For cm see p. 184, Iy is the second moment of area in transverse 
direction, Ecm elasticity modulus and dl the y-coordinate of the loading 
point.  Iy,top ja Iy,bot are the transverse second moment of area of the top 
and bottom flange and z the centroidal distance of the flange.                    
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m. [BY 210] .

Rotation 
around 
longitudinal 
axis

Support against 
bending around 
horizontal axis 

Support against 
bending around 
vertical axis 

m

Prevented Both ends simply 
supported

Hinge
28,3

Prevented Cantilever Hinge
12,8

Prevented Both ends clamped Hinge 98
Prevented One end clamped, 

the other end simply 
supported

Hinge 54

Prevented Both ends simply 
supported

Clamped 50

Prevented Both ends clamped Clamped 137



Rak-43.270 M. Pajari 47

Rak-43.3110   2010  M. Pajari 185

In BY 210 it has been shown that if the sum of the flange depths in an I 
beam is at least 40% of the section and the span  L is not greater than  
60b where b is the width of the flanges, the critical buckling load is at 
least twice the self weight.  This result is obtained even though the 
contribution of the web to It   and Iy is ignored.  

Buckling during lifting is more 
complicated because the support 
against rotation around the longitudinal 
axis is flexible. In most cases the force 
on the lifting hooks has a horizontal 
component which compresses the 
beam and reduces the critical buckling 
load.

Fig. 116.  
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Ties on the top of pitched I-beam

On the free outer surface of a 
structure, the stresses are 
always parallel to the surface. 
On the top of a pitched I-beam, 
the surface makes a bow and 
so must the stresses also do. 
This necessitates a vertical 
balancing force. 

C

T

C

The free body shown in Fig. 117 is affected by forces C parallel to the 
surface. Their horizontal component is not higher than the yield force of 
the tendons  Pyd or  Ccos = Pyd. It follows that

Fig. 117. 

tanPsinCT yd22

With inclination 1:16, T = Pyd/8 is obtained.
In reality, C is not exactly parallel to the surface but more horizontal 
because the stresses inside the beam bend before the ridge. Therefore, 
the actual T is slightly lower. É.g. BY 210 gives a milder expression  

8/P9,0sinPT ydyd1,8
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Before the beam cracks in flexure, the vertical stresses are small. A part 
of the nearly horizontal stresses are transmitted through the web below 
the upper chord. After cracking, the interface between the web and the 
upper chord becomes critical, and the chord must be tied to the web with 
stirrups that carry the vertical tensile force, see Fig. 118.

Fig. 118. Stirrups on the top of a pitched I-beam. [BY210].

Stirrups for force Ft

Stirrups tying compressed rebars

Stirrups to keep the web 
and the chord together
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Even though the rebars in the upper chord were needed only to control the 
cracking due to the prestressing, they, nevertheless, work as compression 
reinforcement in the completed structure. Due to the long-term deformations 
of the concrete, the compressive stresses are transmitted from the concrete 
to the rebars and the rebars may even yield in compression. There is a risk 
of buckling and transmission of the stresses from the bars to the concrete 
via the ends of discontinuous bars . Consequently, the concrete may spall. 
For this reason
- the amount of steel and bar size in the compressed chord must be kept 
small

- the compressed bars are tied with stirrups to prevent buckling
- the compressed bars are not spliced in the zones of highest compression
- whenever possible, the rebars on the top are replaced by upper tendons.

- Kauppakeskuksen katon sortumisvaara Kuopiossa 18.3.2005

- Kauppakeskuksen sortumisvaara Savonlinnassa 31.3.2006

For more information, see www.onnettomuustutkinta.fi , B- ja C- tutkinnat,
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Shear resistance of hollow core slabs on flexible supports (= beam)
The web of a hollow core slab is sensitive to 
shear because it is thin, see Fig. 119, and 
because the production tehnology prevents 
the use of shear reinforcement. However, the 
shear resistance is seldom critical if the 
slabs are supported on walls or other non-
flexible supports.

1200

200

265

320

400

500

Fig. 119. Finnish 
hollow core slabs. 

This is not the case when the slabs are 
supported on beams. When the beams 
deflect, the slab ends are subjected to 
additional transverse deformations to which  
the webs are sensitive. In full scale floor 
tests it has been observed that the shear 
resistance of slabs supported on beams may 
be less than 50% of that measured on non-
flexible supports.
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a

b

a b

Fig. 120. Slabs on a frictionless beam. 
a) Initial state. b) After deflection of 
supporting beam. 

Fig. 121. Actual situation. 
a) initial state. b) After 
deflection of supporting 
beam. 

When a frictionless beam deflects, the slabs push each other outwards as 
shown in Fig. 120. Since there is always friction between the soffit of the 
slab and the beam, and because the slabs are tied to the beam with 
reinforcement, the slabs will be subjected to transverse shear  parallel to 
the beam and deformations as shown in Fig. 121. This effect is taken into 
account according to the Finnish Concrete Code Card 18 based on 20 full-
scale floor tests. The principles of the design method of the Code Card are 
also explained in BY210. 
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Fig.122. Example of floor test. Size of  test specimen 7,2 x 21 x 0,5 m3.
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Fig. 123. Failure mode. The failure initiated next to the support of the beam.
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Note.
- The tested floors have failed when the deflection of the beams has been 
of the order of  L/250 or even smaller
- The reduction in shear resistance cannot be explained by the magnitude 
of deflection only. The interaction between the slab and the beam must 
also be taken into account
- For these reasons, it is not economically reasonable to give such limits 
for the deflection which would  make it safe to escape the consideration of 
the reduction in shear resistance. In other words, it does not pay to control 
the effects of the deflection by controlling the deflections only. 

Things affecting positively or negatively to the shear resistance
+ Stiffness of beam 
+ Dowels on the top of the joint between the slab end and the beam
+ Reinforcement in the concrete topping, if it ties the topping, beam and 

slab together
+ Long concrete fillings in the hollow cores
- Dowels at the bottom of the joint between the slab end and the beam
- Tie reinforcement placed close to the soffit of the slab
- Temporary supports below the beams if not removed before hardening of 
the joint concrete.


